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Abstract

In the companion ‘Part I’ article, the theoretical aspects of anisotropic damage based on second-order tensors were
discussed, and the concept of pseudo-logarithmic rate of damage was introduced. The thermodynamic forces conjugate
to this damage rate exhibit physical meaning, which greatly simplifies the task of defining loading surfaces and evo-
lution laws. In this second part, a formulation for anisotropic tensile damage which takes advantage of those concepts is
developed and verified: the ‘generalized pseudo-Rankine’ model. Depending on the value of a single parameter, the
loading surface in pseudo-log space may assume shapes which vary gradually between a n-plane and a Rankine-type
criterion. This corresponds to a transition from a purely isotropic to a highly anisotropic tensile degradation model. In
spite of the relative complexity of anisotropy, one of the important advantages of the model is that closed-form so-
lutions are possible for a number of simple loading cases. The first one developed is uniaxial tension, which makes it
possible to interpret the remaining two material parameters in terms of the tensile strength o, and fracture energy per
unit volume g;. Adding the two isotropic elastic constants, this makes a total of only five material parameters. Ad-
ditional closed-form solutions are developed for the simple loading cases of pure shear, pure distortion, and uniaxial
tension after tensile loading—unloading in a perpendicular direction. The behavior of the new model under complex
loading histories is illustrated with a numerical tension/shear test with a significant rotation of principal strains. © 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the companion paper (Carol et al., 2000), (referred to as “Part I’ in the sequel), the authors expanded
their theoretical framework of elastic degradation and damage (Carol et al., 1994). A theory of anisotropic
damage was presented based on a second-order tensor secant formulation and on the novel concept of
pseudo-logarithmic rate of damage. By introducing this rate of damage, the corresponding conjugate forces
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turn out to exhibit clear physical meaning in terms of effective stress and effective strains, which greatly
facilitates the task of defining loading surfaces and evolution laws.

In this “Part II”, these new theoretical concepts are exploited with the development of the generalized
pseudo- Rankine model, which aims at the tensile behavior of concrete and other quasi-brittle materials.

The fundamental equations of the model, presented in Section 2, are developed in four steps: selection of
the fundamental variables, definition of the loading surface, calculation of gradients and damage rules, and
formulation of hardening/softening laws. Although no stiffness recovery is considered in this article, special
provisions are made to distinguish between tension and compression for the generation of new damage. In
the proposal, the model has only five parameters: the two initial elastic moduli £° and +°, plus three more.
The first of them, b, determines the degree of anisotropy of the model, which is related to the shape of the
loading surface. All this is also described in Section 2. The remaining two parameters are related to the
uniaxial tension stress—strain diagram of the material.

The formulation has the advantage of permitting closed-form solutions for simple loading cases. In
Section 3, such a type of solution is derived for the uniaxial tension case, which is very convenient for
interpreting the two remaining model parameters in terms of the tensile strength o, and the fracture energy
per unit volume g¢. In Section 4, additional closed-form solutions are presented, for pure shear and pure
distortion, and for the dependency of the current tensile strength on a previous loading—unloading sequence
in a perpendicular direction.

In Section 5, an example of complex loading is presented. In this numerical test, the model is subjected to
tension/shear with significant rotation of the prescribed principal strain directions (Willam et al., 1987).
Detailed numerical results are presented that unveil a rich anisotropic response with features similar to
what is obtained with more complicated models. Finally, Section 6 concludes with a summary of the main
features, advantages and results of the formulation presented.

2. Definition of the model
2.1. Conjugate force variables
In Part I, a second-order anisotropic damage formulation based on energy equivalence and evolution

laws in terms of a pseudo-logarithmic damage tensor rate L;;, was developed. Recalling Section 5 of Part I,
the dissipation rate was obtained as

ijs

d=(—Y)L;= () Myi= zz (— Yy (la—c)

where —%; is the thermodynamic force conjugate to L;. The second equality is obtained by replacing the
decomposition of the damage rate into a non-negative scalar multiplier and damage rule L;; = = J; ;> and the
third one by assuming that the damage rule is defined with same principal axes as the conjugate force.
Assuming linear isotropic elasticity between effective stresses and effective strains, the conjugate force could
be expressed in the simple convenient form,

~Yy =105 ¢y (2)
or, in principal values,
_ eff eff _
—Y 4y =30 oner: k=123 (3)

This force is a fundamental variable as it defines the space in which we will establish the loading surface
and the damage rule. As given by the previous equations, however, this force does not distinguish between
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tension and compression, which is a fundamental aspect of the behavior of quasi-brittle materials. In the
previous equation, —%, has the same value whether offf and ¢ff} are both positive or both negative.
Therefore, a loading function and a damage rule based on those variables exclusively will not be able to
distinguish between tension and compression. If the objective of the model is to represent tensile damage,
the damage rule has to be re-defined such that .# > 0 only for those principal directions subject to
tension, while .# ) = 0 for those subject to compression.

Another difficulty with the definition in Eqgs. (2) and (3) is that the negative values —% ), < 0 could be
obtained when aﬁg > 0 and e?g < 0, or vice versa. As isotropic linear elasticity has been assumed between
effective stresses and effective strains, this could correspond for instance to cases with principal stresses of
the same sign but values much higher in one direction than the other. In such a situation, the Poisson effect
caused by the major stresses may be greater than the strain due to the minor stresses themselves, causing
strains with a sign opposite to that of applied stresses. From Eq. (1a—c), it follows that negative dissipation
may be obtained if the damage is allowed to develop in the direction of a negative —% . In order to avoid
this, a restriction must be imposed that .# ) = 0, whenever —%;) < 0.

The sign of the principal conjugate forces —% ;) in various regions of the effective stress space may be
conveniently represented in the 2-D domain afg oy, taking (i) =0 (for plane conditions, the usual
convention that 3 is the out-of-plane principal component even 1f it might not be the lowest, is adopted

throughout the article). The well-known linear elastic relations €[} = (of)) —V'0}))/Ey and € =

(aff) = 0{]})/Eo may be introduced into Eq. (3), and the resulting —%/;) and —%/;) are depicted in Fig. 1(a)
and (b), in the form of contour levels. In Fig. 1(a), the domain is d1V1ded in four regions separated by the y-
axis and by the inclined straight line aeff) = aeff In the two larger regions labeled 1 and 2, —%/,) is positive;
in region 1 with positive a?ff) and ee“ and w1th negatlve values for both in region 2. In the other two narrow
wedge regions labeled 3 and 4, stress and strain have opposite signs, with resulting negative values of the
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Fig. 1. 2D contour levels of the conjugate forces in the o(f], atf space for v* = 0.3: (a) —%), and (b) —% ).
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first component of the conjugate force. Similar contour levels and regions for —%, are represented in Fig.
1(b).

In order to handle previous difficulties and restrictions in a convenient way, the conjugate force may be
redefined as follows:

— Yy = 3oHHED),
Wiy = 3o ) (€D), (4a—c)
— Yy = oD,

where the angle brackets are McAuley brackets with the usual meaning (i.e. (x) =x if x > 0 and (x) =0

otherwise). Note that this redefinition actually does not change the resulting dissipation as given by Eq.

(la—c), because in those regions where the value of one or more principal components of the original

conjugate force are modified, the corresponding component(s) of the damage rule are required to be zero.
In order to ensure not only continuity but also smoothness across the boundaries of the regions implied

by the modified forces, one additional restriction is placed on the damage rule. It is required to be per-

pendicular to the axis —Jy y (i.e. vanishing component .#;, = 0) for states lying on the plane —Jy —@ 3

and similarly for the remamlng two axes/planes. If the model is associated, this restriction translates into

the geometrical requirement that, at its intersection with the coordinate planes —%;),~% ), or —%

—?’)<3), or —@m,—@(l), the loading surface must be always perpendicular to those planes, as it will be

satisfied by the specific loading function described in the next section.

After the previous definitions and assumptions, the following additional remarks are in order:

e The principal components of the modified force — (1),—@@),—@ (3) are intrinsically positive. As a con-
sequence, the definition of the loading surface will be restricted to the positive—positive—positive octant of
that space (this is in contrast with the original conjugate forces, which could take negative principal val-
ues and the surface had to be defined also outside that octant).

e With the modified forces (4), compressive damage cannot be represented. This type of damage is left out
of the scope of this article.

e Note the symmetric role of stress and strain in the modified forces. The absence of a preferential role of
stress or strain has been a characteristic of the general framework of elastic degradation and damage
proposed by the authors (Carol et al., 1994), and of the specification of the theory to second-order dam-
age and pseudo-logarithmic rate described in Part I. It is remarkable that this property can be also main-
tained in Eq. (4a—c).

2.2. Loading surface in the conjugate force space

The loading function is defined according to the general structure proposed in Section 6 of Part L, i.e.
F = f(—%) — r(history). (5)
For f, the algebraic expression proposed by Chaboche et al. (1994) is adopted

; (6)

where b is a positive constant parameter b > 0, which determines the shape of the surface between the two
limit cases of b — oo and b — 0.

In the limit case of b — oo, the surface F = 0 approaches a Rankine-type criterion in the space of
modified conjugate forces —%, which we call the pseudo-Rankine damage surface. In the sub-region
W4y = — Y = — Y =0, f may be rewritten as

7 5 2 N g\ /6D
f(=%) = (( - ?7/(1))})+1 + (- @(2))“1 +(- Qym)IH)
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==, (7)

Note that, assuming that principal values are always ordered —% ;) > — %5 > — %3, the surface needs
only to be defined in that sixth of the positive—positive—positive octant, and for the rest of the domain, it is
generated by symmetry.

In the opposite case with b — 0, the loading surface approaches a deviatoric plane in —% space with an
expression

For intermediate values of b, a continuous transition of surfaces is obtained between the two limit cases.
For instance, for b = 1, the surface becomes a spherical sector. All this is represented in Fig. 2(a) and (b),
which depict a 3-D view of the surface for b = 5, and the 2-D cross-sections of the surface with the plane
—@(3> = 0, for various values of . Note that, for any b > 0, this surface is always perpendicular to the
coordinate planes at their intersection, and it provides smooth transition (no corners) at the symmetry
planes —% ) = — %), —¥ 2y = =W 3 and —¥ 3y = —% ), which is important for numerical implementa-
tion.

The limit case with 5 = 0 is a special case which requires additional clarification. As the loading surface
becomes a deviatoric plane, the requirement of orthogonality to the coordinate axes/planes cannot be
maintained without generating a discontinuity of the gradients at the intersections. At the same time, it
would seem natural that in this case, the model collapses into isotropic damage, and this corresponds to a
damage rule always parallel to the p-axis (.# ) = .4 ) = .# 3)), which is incompatible with the assumption
that individual components of .# should vanish in specific situations (Section 2.1). As the consequence, for
b =0, all those conditions are relaxed and the model is simply defined separately as the isotropic damage
model that would be ‘closest’ to the general anisotropic formulation. This definition is given by previous
loading function (8), and by the normals always parallel to the p-axis, as specified in Section 2.3. Note that
as Eq. (8) is written in terms of the modified forces (4), which include only tensile contributions, the iso-
tropic model for b = 0 in general is not equivalent to the classical “(1 — D) associated damage model, but
to a non-associated ‘tension-driven’ version of it; only if all three principal components of effective stress

od |

o |

Fig. 2. The loading surface for the generalized pseudo-Rankine model: (a) 3D view for b = 5, and (b) 2D cross-section for —%; = 0, for
b=0, 0.5, 1, 2, 5and 40.



524 L Carol et al. | International Journal of Solids and Structures 38 (2001) 519-546

and effective strain are positive, the modified force then becomes equal to the original, and the model equals
the classical associated formulation.

2.3. Shape of the surface in stress space

The loading surface just defined may also be represented in the principal stress space. In general, this
representation is only possible in terms of the effective stresses. However, for initial conditions with no
damage, effective stresses coincide with nominal stresses and the same diagram will also represent the initial
loading surface in nominal stress space.

Considering the 2-D case again with agf) = 0 for the sake of representation, the principal effective strains
in Eq. (4a—c) may be replaced by the linear elastic relations ) = (of)) —1’0f}))/Ey and €3 =
() =V 0{1})/Eo, and the resulting forces may be substituted into the loading function (5), (6). According
to the signs of effective stresses and effective strains discussed in Fig. 1, the McAuley brackets determine

three regions with different algebraic expressions:

1 b+l
: . ff 0 _eff ff 0 _eff ff ff 0 _eff
Region 1: o) > Viep), o) > Vo) = f [(“?n("?n - 0?2)))

2E0
n (Ugf) (Uigf) 3 voafff)))bﬂ} 1/(b+1),
Region 2: o <Vl ot >0~ = oLt (of — Vot
Region 3: o <vofl, off) >0— f = %Ufg (a?{ﬁ 0 O_?gf)) (9<)

The resulting loading surface F = 0 for various values of parameter b is represented in Fig. 3, with a general
view in Fig. 3(a) and close-up of the tension—tension sector in Fig. 3(b). In the figure, Region 1 corresponds
to the wedge area between the straight lines o} = v’af3) and ¢f}) = V’f]) in the tension-tension sector (Fig.
3(b)), whereas Regions 2 and 3 extend to the left and right of that wedge.

Overall, the shape of the surface agrees well with the tensile-dominated parts of the standard biaxial
failure diagram for concrete (Kupfer and Gerstle, 1973). In Regions 2 and 3, the surface is not affected by
parameter b, which in contrast has significant influence in the tension—tension corner of Region 1. Con-
tinuity of derivatives is maintained between regions, except for the isotropic case b = 0, which did not
exhibit such continuity in the conjugate force space (not perpendicular at the intersections with the co-
ordinate planes). Higher values of b produce a higher curvature of the surface in the tensile—tensile sector,
which, in the limit case of the ‘pure’ pseudo-Rankine model (b — o), becomes a mere continuation of the

curves in Regions 2 and 3, meeting at a sharp corner at the equi-tension line off) = a(}.

2.4. Damage rule

In the anisotropic case » > 0, the model is assumed to be associated. As the loading function is defined in
terms of the principal values of the conjugate force, the damage rule may be expressed as

3 : oF
eﬂ,‘j = JVU = 7{‘ = E ./’f(k)t(k)t;k), /V(k) =, (103.*(1)
o(—=%y) = ' (=)

where the principal gradients .4") may be directly obtained from Eq. (6), and t,@ are the components of the
unit vectors in the directions of the major principal effective stress and strain, according to the spectral
decompositions:
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Fig. 3. 2D representation of the loading surface in effective stress space.
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For the case b = 0, the isotropic damage rule is assumed independently of F, as already explained in the
previous section. This leads to the following expressions:

—ay )
if 6>0, My = e ( b(ki) AR VI
(=0 + (=90 4 (=) ™)
ifb=0, Myy=Mo= Mz =1 (1 e. My =0y). (12a,b)
Note that, for b — oo (pseudo-Rankine), Eq. (12a,b) reduces to
%(1) = 1, ,ﬂ@) = ,ﬂ(’;) =0 <1€ ,ﬂi/ = tf”l‘;”) (132170)

With .4";; and .#,; defined, and considering a generic resistance function r(hist), the gradients in com-
pliance and stress space N;; and ny;, the corresponding flow rules M;;; and m;; and the hardening/softening
moduli H and A may be determined using Egs. (77b,c), (78b,c), (79) and (80) from Part I, in which the
partial derivative 0C, /0L, is given by Eq. (69(b)) and the partial derivative 0(—%,,)/0L, is given in
Appendix 3, of Part I as well.

For a general value of b, analytical substitution of those partial derivatives leads to lengthy equations
that are not strictly necessary for the implementation of the model (substitutions may be done directly with
numerical values). However, in the limit cases » = 0 and » — o0, it is possible to obtain simplified analytical
expressions which offer further insight. For b = 0 (isotropic damage), expressions similar to Egs. (29)—(35)
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of Part I are recovered. In the other limit » — oo (pseudo-Rankine), laborious substitutions and simplifi-
cations lead to the following expressions:

Mijxi = Niyju =550 |:¢ijw( " ) jll }
1+ W (1) (¢1) (1) (1)
+ 450 |:¢)[ij +¢1W Wk +¢kW Wl +¢IW Wk } (14a,b)
1 0 1
I’I’lij = nij = E |: V effd)lj + <% ?ff) + 6Efg>w( )W( 1):|7 (158'7b)
1 - —
—myj = ny = Eyjung = 5 [A(’e?%‘)aﬁu + ( %l + Geff)) ’ )Wj('tl)}’ (16a,b)

o 1] o eff L7 a2
=g g o+ g (48) ]
5o 1| elT 0 o (e )2
H =z +7|ome + (4 +2G)( ) : (17a, b)
where, for convenience, wf”)

and w\"" denote the “vector projections” of w;; and w;; on the first principal
effective direction t}”'

) = wyt. (18a,b)

2.5. Hardeninglsoftening laws

The remaining aspect is to establish the resistance function r, which accounts for the previous damage
history. As history is represented by the damage variables, it seems natural to assume that  depends on
those variables. The simplest damage measure that may be considered in the context of the present theory
seems to be the scalar quantity given by the first invariant of the pseudo-log damage tensor, i.e. L = L;;/3.
As explained in Appendix 1 of Part I, L coincides with the volumetric part of the “true” log damage:

= %(ln ¢%1) + In d’?z) +In (17%3)) = §1n(¢(1)¢)(2)¢(3)). (19a,b)

Aiming at the softening behavior due to tensile damage, the function proposed for »(L) is a simple two-
parameter exponential decay

r(hist) = roe (20)

where ry = 2 /2E° is the elastic energy at peak of the uniaxial tension test, and k is defined in terms of the
Mode I fracture energy per unit volume gr as follows: if b =0, k = ry/3gs, while if b > 0, k = ry/gr (note
that gr is defined as the area under the complete uniaxial stress—strain curve; Fig. 4). These relations will be
justified in the following section after obtaining the closed-form solution for uniaxial tension. It is em-
phasized that the entire damage model has only 5 parameters: the two isotropic elastic moduli E°, v°, the
tensile strength o, and fracture energy density gr, and the shape parameter b linked to the degree of an-
isotropy.
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Fig. 4. The uniaxial tension stress—strain curve with representation of energies r, and g.

3. Closed-form solution in uniaxial tension

To better understand the behavior of the model and the physical meaning of r and k, the loading case of
uniaxial tension along axis x is now analyzed. This means that () = 6., = 0, whereas all other o(; and
o; =0.

A crucial property in this derivation refers to the evolution of damage, for which two cases have to be
distinguished:

(a) Case b > 0: The principal directions of damage remain fixed and the only component of damage that
evolves is the principal value along the loading axis, i.e. ¢y = ¢,,, @2y = ¢3) = 1. Also, the effective strains

and stresses share the same principal axes and their largest eigenvalues are those along x, i.e. af{f) = ¢ and

efl) = e With the generalized Rankine-type surface (and the associated damage rule), this is readily
proven because the surface maintains orthogonality to the coordinate planes for b > 0. Initially, effective
and nominal quantities coincide and the only non-zero principal effective stress is along the x-axis, and the
same holds for the conjugate forces. Therefore, the damage rule (10) also has only one non-zero eigenvalue
along the same axis, and this is the only term modified in ¢;; (or any of the alternative damage tensors). For
subsequent loading, the situation remains the same because even with damage varying along x-axis, ef-
fective stress components (and therefore conjugate forces) remain zero along y and z. Consequently, we
always have ¢, = ¢ = 1.

(b) Case b =0: Here, the damage rule is always the identity tensor (12b), and therefore, ¢,; remains
spherical. Consequently, we have ¢, = ¢3) = ¢(y).

In both cases, the following simple relations apply:

ff i €
‘7?1) =onPa), 6?1) = —¢ . (21a,b)
)

These equations may be directly substituted into Eq. (3), and the ¢, factors cancel out, leading to the
following expression of the loading function (6)
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1
F=300€q) —r. (22)

In other terms, in this case, F' may be directly expressed in terms of nominal stress and strain along the
loading axis.

Upon application of the uniaxial tensile load, the model initially responds with linear elastic behavior
until the loading surface F = 0 is reached at a contact point. Since the softening starts right from the
beginning of inelastic behavior (20), this point corresponds to the peak of the uniaxial stress—strain diagram
in tension, with stress and strains denoted as o, and €. As this is still a point of the initial elastic response,
these values satisfy o, = E%. At the same time, this is the first point at which F = 0, and therefore we may
identify the initial value » = ry as the elastic energy at the peak

1 1a2 1.,
I’OZEGlEIZEE—BZEE € - (23a—c)

Upon persistent loading, the condition F = 0 is maintained. From this condition, we obtain the meaning
of r as the current (secant) elastic energy, and extract a simple relation for stress

! 2

=—0 o
r ) (1)E1)5 1

(24a,b)
€

Application of the general elastic stress—strain relations with the secant compliance (Eq. (65) of Part I) to
this loading case, yields

2
P

€1) = o O0)- (25)

The stress may now be eliminated between this and the second of the previous equations; r may be sub-
stituted from the exponential law (20), and L replaced by its expression in terms of ¢, which, from Eq.
(19a,b),is L = In (]5?1/3 ifb>0,orL=1In (;521) if b = 0 (isotropic damage). The result is a relation between ¢
and ¢y which may in turn be backsubstituted into the previous expressions to obtain the following explicit
equations for the post-peak descending branch of the uniaxial stress—strain diagram,

€ —(1+k)/(1=k)
if b>0, ou = at<£>

€t

. €
lfb:(), 0(1):()'{(&

€t

—(143k)/(1-3k)
) (26a,b)

For k = 0, the exponent is —1 in both cases, and we recover the hyperbolic decay that would correspond
to Eq. (24a,b) with constant » = . For £ > 0, we obtain sharper decays as k is higher, but note that £ must
be less than 1 (for b > 0) or 1/3 (for b = 0) to avoid loss of uniqueness. Those values would indeed cor-
respond to vertical stress drop from the peak.

As already indicated, k may also be related to the Mode I fracture energy per unit volume g; (Fig. 4),
which has the advantage of a clearer physical meaning and provides a simple means of regularizing post-
peak finite element computations. This is achieved by integrating the area under the stress—strain curve:

g =ro +/ oy deq. (27)

Substitution of (26) leads to the following simple relations between parameters:



L Carol et al. | International Journal of Solids and Structures 38 (2001) 519-546 529

ifh>0 k=2
8r

. ro

ifh=0, k=21, 28a, b
3g ( )

Note that the previous restriction on the values of k, translates (in both cases » = 0 and » > 0) into the
condition that g; > »y, which corresponds to avoiding snap back in the uniaxial stress—strain relation.
Backsubstitution of k into the previous equations leads to the following expressions for r

if 5>0, r=rpe 0o/l
ifb=0, r= roe*("O/gf)L. e

Most of the remaining unknowns of the problem have common expressions for » > 0 and » = 0:

—(ge+r0)/(ge—70) —2¢g¢/(gr—r0) gr/(ge—r0)
€1 €1 €1
o(1) _6t<()) y E—EO(()> s 4)(1) = <()> s (303—(?)

€t €t €t
—ro/(gr—"0) —ro/(gr—"0)
€ 0 €1

except the lateral nominal strains, which are

: off _ eff o [ €W “ofter)

if6>0, €o =€3 =€y =¢€3 ="V et(e—t) ,

if b= 0, €2) = €3) = ¢(1)€?£f) = —V06(1). (32a7C)

These solutions, for all variables except for the lateral nominal strains, are illustrated in Fig. 5 for the

fixed parameter values E° = 107 kPa, v’ = 0.2, 6, = 10* kPa, and changing values of g;. In the first plot, the
evolution of stress g,, = o(}) is represented against the prescribed strain e,, = ¢(). It is apparent that, for
gr = 0o, the decay of o, is the slowest, while for progressively lower finite values of gr, softening is more
pronounced. The effective stresses (second plot) exhibit a similar trend, but starting from a horizontal line
for the case gr = oo, in which the stress decay is compensated in the same proportion by increase of the
inverse integrity. For progressively lower finite values of g, effective stresses decrease more rapidly but
always at a lower pace than their nominal counterparts. The third plot exhibits the evolution of the minor
principal value of the integrity tensor, which in this case is ¢, = 1/¢,.. As it could be expected, decay is
faster for lower values of g¢. In the fourth plot, the effective strains in the direction of loading and in the
lateral directions, are illustrated against the prescribed axial strain. In the limiting case of g = oo, effective
strains remain constant after the peak, while for finite values of g, they decrease asymptotically to zero,
faster as g¢ decreases and approaches ry. In the case » > 0, the nominal lateral strains are the same as their
effective counterparts. In the case » = 0, the nominal lateral strains (not plotted) are simply proportional
with constant Poisson’s ratio 0 to the prescribed axial strain (corresponding to the “(1 — D)” isotropic
damage model, which modifies £° but not 1°).

4. Other simple loading cases with a closed-form solution

Closed-form solutions similar to the one for uniaxial tension may also be obtained for other basic
loading cases such as pure shear and pure distortion. Also, in these cases, the solution has to be derived
separately for the case » > 0 (anisotropic damage) and b = 0 (isotropic damage). A closed-form solution is
also obtained for the reduction of tensile strength due to previous tensile loading in a perpendicular di-
rection.
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Fig. 5. The results obtained with generalized pseudo-Rankine model under uniaxial loading, for different values of parameter g;.
Evolution with respect to the prescribed uniaxial strain, of (a) stress, (b) effective stress, (c) integrity tensor, and (d) effective strains.

4.1. Pure shear for b > 0 (anisotropic damage)

The principal stresses that correspond to pure shear with prescribed intensity 7 > 0 on planes at 45° are
on=71, 0O@p=-1, 03 = 0. (332143)

For increasing 7, this would represent a straight path at either —45° or 135° (tension/compression quad-
rants) in the biaxial stress space (1), o(2). During the initial undamaged elastic regime, nominal stresses
coincide with effective stresses, and the same representation would be valid on the effective stress space of
Fig. 3. Similar arguments to the case of pure tension in previous section, lead to the conclusion that for
b > 0, the only direction developing damage will be principal directionl, i.e. the one with the tensile stress.
This means that ¢, is the only damage component growing from 1 to oo, while ¢,y = ¢5) = I (note that
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this is due to having written the loading function in terms of the modified conjugate forces (4) which
distinguish tension from compression; otherwise, compressive direction 2 would also develop damage). This
implies the following effective stresses (Eq. 60(b) of Part I):

az’{f) = o7, agf) =0p =T, aﬁgf) =03 =0. (34a—c)

Using linear isotropic elasticity with parameters E°, v°, and the nominal-effective relations (Eq. (61), (62) of
Part I), one can obtain the corresponding effective and nominal strains:

T T T
€ =5 b+, €l =09, el == S - 1), (350-¢)
’E €
€y = E(d)(l) + vo)qﬁm, €)= efgf), €@ = e(gf) (36a—)
In order to identify the strain y conjugate to 7, the elastic energy is developed, leading to
_ 1 _1 Ty oy — _ T 14+ 20 2 3
u= EO'U-EU- = 5‘[/, Y = €1) — €)= E_() ( + 2v ¢(1) + ¢(l))' ( 78.7C)

In the elastic range, Egs. (33a—c)~(37a—) apply if we set ¢;) = 1. The loading condition is reached for the
first time when F = 0, i.e.

1 € e 2
F= §0<1f€ (fg =515 (14 —r, = 0. (38)
This value of T represents the elastic stress at the contact point with the loading surface for this type of
loading (onset of damage), which we call 7y. Taking advantage of previous relations (23), one may write
Ot

Vi

After peak, the loading surface is enforced with the current value of r. For > 0, this is given by Eq.
(29a,b), in which L = L;;/3 is the same as in uniaxial tension, i.e. L = In ¢(21/)3 . Replacing all these expres-
sions, one obtains

To = (39)

F = 1 elf eff 2 (
2°me 2E0

The previous equation may be rewritten in the following convenient form:

_ [ 14V 1) —u/er)
T="1p m¢() o/ (41)

Replacing this relation into Egs. (33a—c)—(36a—c), one may obtain all remaining stresses and strains,
nominal and effective, in terms of the damage variable ¢;,. Finally, Eq. (41) may be replaced into the
conjugate strain expression (37) to obtain

2
= 1+ 2V0(]5(1) + ¢(1) 1+ ¢ (1/2)~(ro/gr) (42)
0 2(1 +V0) d)(l) 4+ 0 (1) )

where the peak strain is

Yo =26V 14+ = % (43)

GO
and G is the initial shear modulus Gy = Ey/2(1 +1°).

— =

day +1") by — rod " = 0. (40)
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The form of Eqgs. (41) and (42) is such that it is not easy to eliminate ¢;, and obtain an explicit relation
between 7 and y. Nevertheless, one can use them as two parametric expressions in terms of ¢ ;). By giving
values between 1 and oo to this variable, pairs of values of T and y may be generated and plotted in a
diagram. This has been done in Fig. 6(a), for the parameter values E° = 107 kPa, v = 0.2 and ¢, = 10* kPa
(same as in the previous section), which leads to the values of 1y = 9129 kPa and y, = 0.002191. Various
curves have been obtained for g¢/ro = 1.001,1.25,2,5 and 100 (for practical purposes similar to co). Note
that, also in this case, parameter b is irrelevant as long as b > 0.

Fig. 6(a) shows how brittle and unstable the post-peak response is for the pure shear loading case.
Curves with snap-back are obtained for usual values of gr/ry between 2 and 10. Actually, these results have
to be interpreted carefully, because even those curves without snap-back would be unstable for the ‘pre-
scribed-stress’ type of loading assumed (the curves can be plotted thanks to the parametric nature of the
equations used, in which ¢, takes the role of always-increasing indirect control variable in the test). The
precise value of gr/ro for which snap-back disappears may be obtained from previous Egs. (41) and (42).
The slope of the shear response is given by the derivative of T with respect to y, which can be expanded via
chain rule

ot ot 0y ot 1

oy 3y O 3y, 07/0¢,

(44)

In particular, the snap-back will occur when dy/0¢,, vanishes. By developing this derivative from ex-

pression (42), and setting ¢;) = 1, one obtains the following limit condition at the beginning of the
postpeak curve:
g _o( L), (45)
ro VO

For the value of v* = 0.2 used in the example, the condition for no snap-back becomes g;/ry > 12, which is
in good agreement with Fig. 6(a). Note also that this value would be higher for lower Poisson’s ratios and,
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Fig. 6. The results obtained with generalized pseudo-Rankine model with 4 > 0 (anisotropic damage) under (a) pure shear loading, and
(b) pure distortion loading, for different values of the parameter g.
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in the limit case of 0 = 0, would become infinite. In this case, the response would always exhibit snap-back,
no matter how large the value used for g /7.

4.2. Pure distortion for b > 0 (anisotropic damage)

In this alternative loading case, principal strains 1 and 2 are prescribed with same intensities /2 > 0 and
opposite signs, while stress on axis 3 is maintained zero (plane stress). As before, only the first principal
component of the inverse integrity tensor ¢, grows from its initial unit value, while the other two remain
unchanged ¢, = ¢, = 1. This implies the following nominal and effective strains and stresses:

€1y = %7 €2) = —% (46a,b)
1 9y Y
ff ff
€ =— =, el — - =, (47a,b)
(1 by 2 @) 2
1 -9 - oy — i
eff 0 ©0) eff 0-_ (1) eff
oy =Gy——"—, oy=—-GC7)———— a5 =0, (48a—c)
g (I =) @ (I =" o
1 -
0~ M eff
oy =G y————, 0o =0, oz =0. 49a—c
(1) /(1 _ V0)¢<21) 2 ) ) ( )
From these, one can obtain the out-of-plane strains
off _ W l=¢y 7

€3) = €3 = ———— <. (50a,b)
DT T oW gy, 2
The identification of the stress quantity t conjugate to 7, follows a similar procedure as in the case of
fixed stress ratio, leading to
0 2
1 1 o 1 =2V + ¢,

T==(00) —0) = EG y 20 v0)¢2 ) (51a,b)
(1)

In the elastic range, this strain history produces the same results as in the previous section, which can be
verified by setting ¢ ;) = 1 in both sets of equations. Stress and strain at the contact point with the loading
surface (onset of damage evolution) are also the same 7, and y, given by Egs. (39) and (43). After peak,
enforcement of F = 0 with the current value of r leads to the expression of 7 in terms of the damage variable

by

, [ 1= /e
T="7 b (52)
1—0¢, &)

Replacing this expression into previous Egs. (46a,b)—(51a,b), one obtains all the remaining variables of the
problem in terms of ¢ ), and, in particular, that of the conjugate stress:

2
T=r1 - 2‘}0(]5(1) + ('b(l) 10 qb*l*("o/gf) (53)
21— W) L=, ™ '

As before, the solutions turn out to be independent of parameter b (degree of anisotropy of the model), as
long as b > 0. Egs. (52) and (53) may be used as parametric expressions for 7 and 7 in terms of the always-
increasing variable ¢, > 1. In this way, pairs of values have been obtained and plotted in Fig. 6(b), for the
same parameters and values of gr/ry as in previous section.
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In Fig. 6(b), it can be seen that this case is considerably more stable than the previous one. Although
right after the peak most of the curves exhibit softening, none of them has snap-back. Initial negative slopes
rapidly decrease and change sign, and all the curves end up approaching the same asymptote with positive
slope (dashed line in the figure). The curve for the highest value of g¢/ry = 100 skips the softening alto-
gether, starting after the peak directly with hardening. The limit value of g¢/r, for this transition may be
calculated again with Eq. (44). In this case, 07/0¢,, is always positive, and the horizontal tangent corre-

sponds to the zero of 9t/d¢,;). Developing this condition, and setting ¢;, = 1, one obtains
8t 1
==2(=-1). 54
o <V0 ) (54)

Using v* = 0.2, this formula leads to g;/ry = 8, which is in good agreement with Fig. 6(b). Note also that
this limit value is higher for lower Poisson’s ratios, becoming g;/ry = oo for the limit case of v* = 0, i.e. in
this case, all the curves would start in the softening regime no matter how large the value of g;/ry is.

Another interesting peculiarity of this case is that even if the prescribed strain is increased unlimitedly
7 — oo, the damage expressed in terms of the inverse integrity ¢ ;) does not grow indefinitely, but it reaches
asymptotically a finite value. This value may be obtained from the expression of 7 (52), which becomes
infinity as the denominator vanishes. This translates into the condition

= (59)
v

For the value v* = 0.2 used in the example, this yields an asymptotic value of qb?l"‘)‘x = 5. The slope of the

asymptotic stiffness may also be obtained from previous equations as the ratio 7/y when the limit value

¢y =5 is approached. By doing so, one obtains t/j = E°/4 = Go(1 +1°)/2, which is the slope of the

dashed line represented in Fig. 6(b).

The fact that in this loading case, T always ends up increasing regardless of g¢/ry, may be interpreted
physically because damage is only allowed to develop in the tensile direction, while stiffness in the com-
pressive direction remains unchanged. When damage starts, stress in the tensile direction decreases, more
abruptly at the beginning and then progressively more slowly, while in the compressive direction stress
always increases. Thinking of a Mohr diagram, the shear stress is given by the radius of the Mohr circle.
Initially, the decrease rate of the tensile stress may exceed the increase rate of the compressive stress, causing
a decrease in shear stress, but sooner or later the increase of compression will overcome the decrease of
tension, and shear stress will start increasing again.

4.3. Pure shear or distortion for b = 0 (isotropic damage)

In this case, damage is isotropic and therefore the inverse integrity tensor remains spherical, i.e. all three
eigenvalues have the same value ¢(;) = @5y = @3 = ¢, with ¢ varying from 1 to oo as the damage pro-
gresses.

As before, one can consider the two loading cases of pure shear and pure distortion. For 5 = 0, however,
both cases turn out to coincide. Here we start with pure shear. The prescribed stresses are again given by
Egs. (33a—c), leading in this case to the following effective stresses, and effective and nominal strains:

6?{1; = f¢v O-?g = _T(;ba G?g = Oa (563‘C)
T T

€y = ﬁ@ € = _Z—God)’ ey =0, (57a—<)
T T

€y = ¢2, €2) = <l52, €3 = 0. (58a—c)

T 260 260
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One can immediately see that ¢y and ¢, have identical values and opposite signs, which means that they
could be renamed y/2 and —y/2, and the full equivalence to the pure distortion case could be immediately
established.

The strain y conjugate to T is now

T
V= €1) — €2 = a 2. (598., b)

The loading surface F = 0 is enforced with the resistance function r given by Eq. (29a,b) and the log
damage L = L;;/3, which for isotropic damage becomes L = In ¢*. Replacing all these into F = 0, the
expression of the prescribed stress 7 in terms of ¢ is obtained, which then can be substituted in previous
equations to obtain all the remaining variables in terms of ¢, and in particular that of the conjugate strain .
The expressions of interest are

T= 1o U)oy = !0/ (60a, b)

where the stress and strain at the contact point, 7, and 7y,, are the same as for b > 0, Eqgs. (39) and (43).

Parametric equations (60a,b) look simpler than their anisotropic counterparts (41) and (42) or (52) and
(53). Actually, in this case, it is possible to isolate ¢ in terms of y from the second equation and replace in
the first. The result is the explicit relation,

y —(ge+r0)/(gr—70)
T=T1p (—) s (61)

Yo

which is valid after damage starts, for y > y,.

The curves defined by Eq. (61) are plotted in Fig. 7, for the same fixed elastic parameters £° = 107 kPa
and v’ = 0.2, and the same values of g¢/ry = 1.001, 1.25, 2, 5 and 100, as in the previous section. In this
case, all the curves exhibit similar trends. Although the exponential type of decay is more pronounced for
lower g¢/ro (and becomes a vertical drop for the limit case g¢/ry = 1), eventually all the curves approach the
horizontal axis, and none of them exhibits snap back. These facts, together with the equivalence between
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Fig. 7. The results obtained with generalized pseudo-Rankine model with b = 0 (isotropic damage) under pure shear/distortion
loading, for different values of the parameter g.
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prescribed shear and prescribed distortion loading, show how the response of the traditional isotropic
damage model can deviate substantially (not only quantitatively, but also qualitatively) from that predicted
with an anisotropic formulation.

4.4. Dependency of tensile strength on previous tensile loading in perpendicular direction, for b > 0

Another analytical solution of practical interest is the influence on the uniaxial stress response, of a
previous uniaxial tension loading and unloading in a perpendicular direction. This is only developed for the
anisotropic version of the model (b > 0), because with isotropic damage the influence is trivial (i.e. the
stress—strain diagram in the y-direction continues the unloading-reloading path initiated in the x-direction
as if direction had not changed).

To develop this case, we consider a load history with three steps. First, uniaxial loading is applied along
the x axis until some post-peak state; second, this stress is unloaded completely; and third, a second uniaxial
load is applied along the y axis.

The response to the first uniaxial loading along x is the same as developed in Section 3. Evolution of all
variables is given by Eqgs. (30a—c)—(32a—c) and represented in Fig. 5. If the maximum strain prescribed
during this first part of the load history is €, = €* > ¢, the values reached by the other evolving variables
will be

¢ —(gr+r0)/(gr—r0)
*
Oxx =0 = 0t <_) )

€t

& gr/(gr—ro)
d)xx = qS* = (> 9

€t

2 e gr/(gr—70)
L=L"==In <—> ,

€t
e\ o/ (g—ro)
r=r"=ry <—) . (62a-d)

At the same loading stage, stiffness will have degraded according to the general expression (57) of Part I. In
matrix form, the corresponding compliance is

(¢ ="V g™
—¢"° 1 -0

R B I A L 1
C=p 267 (1 +19) (63)
2(1 +v9)

2¢7(1+1°)

Upon unloading (second part of the load history), stress and strain will go back to zero, while the secant
compliance C* remains unchanged. ¢, L and r will also keep their modified values ¢* > 1, L* > 0 and
r <.

In the third part of the load history, uniaxial tensile loading is applied along direction y. Until the
loading surface is reached again, the material responds elastically according to the secant compliance C*.
However, note that the diagonal component 2,2 in matrix (63) remains unchanged, i.e. the uniaxial com-
pliance along y is still the initial 1/E°. Also, the principal integrity value along this axis remains unchanged
and equal to 1 (no damage); thus, we can write

xx°

Oy = a}e;f = EOEW, (64)
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i:rljl?lel strength reduction o))" /o, due to previous loading in perpendicular direction
gt oy 0.8 0.6 0.4 0.2 0.1
o fay for gr = 3ry 0.95 0.88 0.80 0.67 0.56
an /o for gr = Try 0.97 0.94 0.89 0.82 0.75

while all other components of stress, nominal and effective, remain zero.
The strength in the y direction will be given by the new contact point with the loading surface, which
may be expressed as

2

1 Ty .
F:EG;;fe;g—rzzgo —r=0. (65)

As r was reduced from rq to #* during the previous loading, the loading surface has shrunk and the new
contact value of g, will be indeed lower than the initial tensile strength o,. Replacing »* with its expression
and making the appropriate substitutions, one can finally reach the expression:

gmax «\ 70/ (ro+ge)
W <6> (66)

Tt Tt

As it is required that gr > ry (and most often g¢ > 3ry), the exponent on the right-hand side will be smaller
than 0.5 (and most often than 0.25), and the fraction ¢};** /g, will be significantly higher than the fraction
d*/a,. This means that the tensile strength along y, although affected by the previous loading on x, will
decrease less (and in general significantly less) than the amount that the strength had been reduced on
that axis. This is illustrated with some numerical values for the cases of g¢/ro = 3 and 7, which are given in
Table 1.

It has to be noted again that the previous values (same as all expressions in this section) are only valid for
the anisotropic version of the model (b > 0). For the isotropic damage model with 5 = 0, the reduction of
the strength along y would be identical to the reduction produced during the previous loading along x, i.e.
figures in the two horizontal rows in the table would be identical to those in the heading.

On the other hand, one can also try to imagine how the cross-influence on tensile strength could be
eliminated altogether. The resistance function assumed in this study » = (L) is among the simplest possible,
and accounts for previous history through the single scalar quantity L. This scalar measure of logarithmic
damage can certainly not ‘remember’ on which direction previous damage was generated, and it is actually
remarkable that the effect of some previous damage in a perpendicular direction is somehow reduced,
thanks to the interaction with the stiffness, still intact along the loading axis. If desired, complete elimi-
nation of the cross-influence on tensile strength should be achieved via a more complicated resistance
function, which could be made dependent on the whole damage tensor rather than its first invariant, i.e.
r = r(¢,;). Such a generalization, however, falls beyond the scope of the present article.

5. Numerical test with rotation of principal directions

In order to investigate the behavior of the proposed anisotropic model under general loading situations
where principal directions may rotate, the numerical test proposed by Willam et al. (1987) has been chosen.
This test has become widely used to verify and compare constitutive models for cracking and damage (Rots,
1988; Oliver et al., 1990; Feenstra and de Borst, 1992; Carol and Prat, 1995; Guzina et al., 1995; Kroeplin
and Weihe, 1997; Meschke et al., 1998).
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The test consists of two loading steps: In the first one, a uniaxial tensile stress is applied in the x di-
rection, bringing the material to the onset of softening (i.e. in this case, the peak of the uniaxial stress—strain
law). In the second step, increments of the in-plane strain components ¢,,, €,, and e,, are prescribed in the
proportions 1, 1.5, 1, while the out-of-plane degrees of freedom remain with prescribed zero stress. This
represents an increment of positive (tensile) strain for both principal directions, accompanied by a rotation
of principal axes. The rotation pace is faster at the beginning and progressively slower later on, with a final
asymptotic value of 52.02°. The parameter values £ = 107 kPa, v’ = 0.2 and ¢, = 10* kPa are the same as
in the previous section. Fracture energy is taken as gr = 15 kPa, i.e. three times the elastic energy at peak.
The results are presented for values of » = 0 (isotropic damage), 0.5, 1, 5 and 40 (close to ‘pure’ pseudo-
Rankine).

In Fig. 8(a), the prescribed strain components e, €, and the resulting principal in-plane strains ¢y and
€(2), are plotted against the prescribed strain along the x-axis, €., which is taken in all subsequent plots as a
reference ‘time variable’. The angle of rotation of the major principal strain which is implied by previous
prescribed values, is plotted in Fig. 8(b). The results obtained with the model in terms of stress, effective
stresses, conjugate forces, damage values and rotation of principal directions of all these quantities, are
illustrated in Figs. 9-14.

In Fig. 9, the evolution of stress components oy, o,,, d,, and principal stresses o) and (), are shown
together in four figures for the values of b = 0 (isotropic damage), b = 1, b = 5 and b = 40. In Fig. 10, the
same set of curves are regrouped into four plots, each representing the evolution of a single stress com-
ponent obtained for the various values of . From the figures, it is apparent that, as the parameter b in-
creases and we approach the pseudo-Rankine loading surface, the stress evolution becomes progressively
different from the one obtained with isotropic damage. The main differences observed are the inversion of
sign of the shear stress, the higher increase of g,, that at some point overcomes o,,, the short horizontal
plateau in the o,, stress component towards the middle of its descending branch and, perhaps the most
salient, the secondary peak that appears around the middle of the descending curve of the major principal
stress.

Unfortunately, in the literature on concrete and quasi-brittle materials, there seems to be no experi-
mental information for this type of tensile test with rotation of principal directions. This is probably due to
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Fig. 8. The prescribed strain for Willam’s test. Evolution, with respect to component ¢,,, of (a) components ,,, €., and principal values
€(1)> €@2), and (b) angle of major principal direction of strain with x-axis.
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Fig. 9. The results of generalized pseudo-Rankine model subject to Willam’s test. The evolution of in-plane stress components and

principal values with prescribed strain ¢, for (a) b =0, (b) b= 1, (c) b =5 and (d) b = 40.

the numerous practical difficulties that would be involved in such a laboratory test. Comparison is therefore
restricted to other numerical results. Phenomena such as secondary peaks or shear inversion have been
previously reported with some smeared cracking or damage models. In general, those were more compli-
cated models with a number of arbitrary parameters such as the crack threshold angle or the shear retention
factor (Rots, 1988; Oliver et al., 1990; de Borst et al., 1994; Weihe et al., 1998), models using separate yield
surfaces for each of the potential crack planes with its own inelastic multiplier, softening history, etc. (Carol
and Prat, 1995; Kroeplin and Weihe, 1997), or multidissipative models combining damage and plasticity
(Meschke et al., 1998). It is a pleasant surprise that the proposed generalized pseudo-Rankine model, with
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Fig. 10. The results of generalized pseudo-Rankine model subject to Willam’s test. The evolution of stresses with respect to prescribed
strain ¢, and for various values of b: (a) component a,,, (b) eigenvalue o(;), (c) component g,,, and (d) component g,,.

only five parameters and one of the simplest resistance functions possible, is nevertheless capable of rep-
resenting this type of features.

In Fig. 11, similar illustrations as in Fig. 9 are shown for the effective stresses. Each plot contains the
evolution of in-plane components and principal values of the effective stresses, for a fixed value of pa-
rameter b that may be 0, 1, 5 or 40. Although different in magnitude, these plots are qualitatively similar to
those of the conjugate forces —%/;, represented in Fig. 12. Very interesting is the fact that, as b is assumed
larger and the loading surface closer to pure pseudo-Rankine, at some advanced point of the loading se-
quence the effective stress tensor becomes spherical, with vanishing shear components and converging

values of ¢°ff, g°f af{f) and agf). This is specially pronounced in the plot for 5 = 40, and clearly corresponds

xx )2
to the fact that yt}he current point reaches the ‘smoothed vertex’ of the pseudo-Rankine surface, which is the
only region with a normal along the p-axis, i.e. with a damage rule producing increments of purely isotropic
degradation. Note that this transition point also coincides with abrupt changes of slope of some of the
curves in previous Figs. 10 and 11, particularly with the end of the plateau in the a,, curve (and similarly in

the ¢, curve shown later in Fig. 13). One small but interesting difference in the plots of the conjugate forces
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Fig. 11. The results of generalized pseudo-Rankine model subject to Willam’s test. The evolution of in-plane effective stress compo-
nents and principal values with prescribed strain ¢,, for (a) 5 =0, (b) b =1, (c) b =5 and (d) b = 40.

(Fig. 12) is the slight negative values observed for the —%,, and —% )

curves, at the beginning of the second

part of the test. In any case, these negative values have no practical consequence given the modified forces

defined in Section 2, with which negative values are set to zero.

In Fig. 13, the evolution of the components of the integrity tensor d%,- (inverse to ¢,)), is presented in four
graphs for b=0, b=1, b =15 and b = 40. For the integrity tensor, the lowest principal value has been
considered as (f)m because it corresponds to the direction with the largest amount of damage. It can be seen
in the figures that, as b is higher, the difference between the principal values 1 and 2 increases, one becoming
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Fig. 12. The results of generalized pseudo-Rankine model subject to Willam’s test. The evolution of in-plane conjugate force com-
ponents and principal values with prescribed strain ,, for (a) 5 =0, (b) b= 1, (¢c) b = 5 and (d) b = 40.

considerably larger and the other smaller (by a factor up to 5) than the damage obtained in the isotropic
case (b = 0). For higher values of b, a small plateau starts to appear in the descending curve of ¢, around
the value 0.4. This plateau, which ends abruptly when ¢,, equals about twice the peak strain, coincides very
well with the one observed for nominal stresses.

In Fig. 14, the evolution of the angles of the major principal directions is depicted in four plots. The first
of them represents the evolution of the orientation of the major principal directions of stresses, effective
quantities and damage for b = 1, together with the (prescribed) orientation of the major principal strain. In
each of the second, third and fourth plots, the evolution of one of those orientations is depicted for the
various values of b. In the case of isotropic damage (b = 0), coaxiality is maintained, and therefore curves
for stress or effective stress coincide with the curve for the angle of prescribed strain, which is included in all
plots (for damage it does not make sense to talk about principal direction in this case, as the tensor remains
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Fig. 13. The results of generalized pseudo-Rankine model subject to Willam’s test. The evolution of in-plane damage components ¢
J)W and principal values ‘50) and qE(Z) with prescribed strain e,,, for (a) 5=10, (b) b=1, (c) b =5 and (d) b = 40.

XX

isotropic). Examining all different response features, we note the general tendency that the rotation of
damage falls slightly behind the rotation of the driving strain, while both effective stress, and especially
nominal stress, significantly overtake the prescribed strain rotation. This may be explained with the ar-
gument that damage weakens the material in directions of previous principal strain, and under application
of a subsequent increment of strain, the corresponding increments of stress overrotate, following the
general principle that the stiffer part always takes more stresses. For b = 40, it is apparent that as the
smooth corner of the pseudo-Rankine surface is reached and degradation increments become fully iso-
tropic, the damage also becomes coaxial with prescribed strain. At the same time, effective stresses stop
rotating (actually the rotation is slightly reversed) and the rotation rate of stresses is drastically reduced.
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6. Concluding remarks

The new concept of pseudo-logarithmic rate of damage was introduced in ‘Part I’. This damage rate and
the corresponding conjugate forces exhibit convenient properties, which greatly simplify the task of defining
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loading surface and evolution laws for anisotropic damage.
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In this ‘Part II’, a specific model is developed within the new framework. First, modified conjugate forces
are defined, which make it possible to distinguish tension and compression cases and avoid negative dis-
sipation. The loading surface is then defined in the space of these modified forces. Depending on a single
parameter b, a family of shapes is generated between the zn-plane (classical isotropic damage) and the
Rankine-type surface (maximum anisotropic damage). Equipped with very simple evolution laws, the
model exhibits a closed-form solution in uniaxial tension, which allows us to identify the damage pa-
rameters in terms of physical quantities that can be measured in the laboratory such as ¢, and g;. Together
with E£°,v° and b, this makes a total of only five material parameters for the anisotropic damage model. The
fact that g is one of the parameters, is also very convenient for implementing energy regularization pro-
cedures at the finite element level.

Additional closed-form solutions are presented for pure shear and pure distortion, as well as the in-
fluence on the tensile strength, of a previous loading/unloading sequence in a perpendicular direction. These
solutions clearly show how the response of the isotropic damage model (b = 0) may differ substantially
from that of a full anisotropic model (b > 0).

In spite of its relative simplicity, this model is capable of representing complex anisotropic response, as
obtained from its application to a numerical test in tension/shear with significant rotation of principal strain
directions. In these calculations, the generalized pseudo-Rankine model exhibits secondary peaks, and a
number of other phenomena only observed so far with more complicated models.
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