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Abstract

In the companion `Part I' article, the theoretical aspects of anisotropic damage based on second-order tensors were

discussed, and the concept of pseudo-logarithmic rate of damage was introduced. The thermodynamic forces conjugate

to this damage rate exhibit physical meaning, which greatly simpli®es the task of de®ning loading surfaces and evo-

lution laws. In this second part, a formulation for anisotropic tensile damage which takes advantage of those concepts is

developed and veri®ed: the `generalized pseudo-Rankine' model. Depending on the value of a single parameter, the

loading surface in pseudo-log space may assume shapes which vary gradually between a p-plane and a Rankine-type

criterion. This corresponds to a transition from a purely isotropic to a highly anisotropic tensile degradation model. In

spite of the relative complexity of anisotropy, one of the important advantages of the model is that closed-form so-

lutions are possible for a number of simple loading cases. The ®rst one developed is uniaxial tension, which makes it

possible to interpret the remaining two material parameters in terms of the tensile strength rt and fracture energy per

unit volume gf . Adding the two isotropic elastic constants, this makes a total of only ®ve material parameters. Ad-

ditional closed-form solutions are developed for the simple loading cases of pure shear, pure distortion, and uniaxial

tension after tensile loading±unloading in a perpendicular direction. The behavior of the new model under complex

loading histories is illustrated with a numerical tension/shear test with a signi®cant rotation of principal strains. Ó 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the companion paper (Carol et al., 2000), (referred to as ``Part I'' in the sequel), the authors expanded
their theoretical framework of elastic degradation and damage (Carol et al., 1994). A theory of anisotropic
damage was presented based on a second-order tensor secant formulation and on the novel concept of
pseudo-logarithmic rate of damage. By introducing this rate of damage, the corresponding conjugate forces
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turn out to exhibit clear physical meaning in terms of e�ective stress and e�ective strains, which greatly
facilitates the task of de®ning loading surfaces and evolution laws.

In this ``Part II'', these new theoretical concepts are exploited with the development of the generalized
pseudo-Rankine model, which aims at the tensile behavior of concrete and other quasi-brittle materials.

The fundamental equations of the model, presented in Section 2, are developed in four steps: selection of
the fundamental variables, de®nition of the loading surface, calculation of gradients and damage rules, and
formulation of hardening/softening laws. Although no sti�ness recovery is considered in this article, special
provisions are made to distinguish between tension and compression for the generation of new damage. In
the proposal, the model has only ®ve parameters: the two initial elastic moduli E0 and m0, plus three more.
The ®rst of them, b, determines the degree of anisotropy of the model, which is related to the shape of the
loading surface. All this is also described in Section 2. The remaining two parameters are related to the
uniaxial tension stress±strain diagram of the material.

The formulation has the advantage of permitting closed-form solutions for simple loading cases. In
Section 3, such a type of solution is derived for the uniaxial tension case, which is very convenient for
interpreting the two remaining model parameters in terms of the tensile strength rt and the fracture energy
per unit volume gf . In Section 4, additional closed-form solutions are presented, for pure shear and pure
distortion, and for the dependency of the current tensile strength on a previous loading±unloading sequence
in a perpendicular direction.

In Section 5, an example of complex loading is presented. In this numerical test, the model is subjected to
tension/shear with signi®cant rotation of the prescribed principal strain directions (Willam et al., 1987).
Detailed numerical results are presented that unveil a rich anisotropic response with features similar to
what is obtained with more complicated models. Finally, Section 6 concludes with a summary of the main
features, advantages and results of the formulation presented.

2. De®nition of the model

2.1. Conjugate force variables

In Part I, a second-order anisotropic damage formulation based on energy equivalence and evolution
laws in terms of a pseudo-logarithmic damage tensor rate _Lij, was developed. Recalling Section 5 of Part I,
the dissipation rate was obtained as

_d � ÿÿYij

�
_Lij �

ÿÿYij

�
Mij

_k � _k
X3

k�1

ÿÿY�k�
�
M�k�; �1a±c�

where ÿYij is the thermodynamic force conjugate to _Lij. The second equality is obtained by replacing the
decomposition of the damage rate into a non-negative scalar multiplier and damage rule _Lij � _kMij, and the
third one by assuming that the damage rule is de®ned with same principal axes as the conjugate force.
Assuming linear isotropic elasticity between e�ective stresses and e�ective strains, the conjugate force could
be expressed in the simple convenient form,

ÿYij � 1
2
reff

ik �
eff
kj �2�

or, in principal values,

ÿY�k� � 1
2
reff
�k��

eff
�k�; k � 1; 2; 3: �3�

This force is a fundamental variable as it de®nes the space in which we will establish the loading surface
and the damage rule. As given by the previous equations, however, this force does not distinguish between
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tension and compression, which is a fundamental aspect of the behavior of quasi-brittle materials. In the
previous equation, ÿY�k� has the same value whether reff

�k� and �eff
�k� are both positive or both negative.

Therefore, a loading function and a damage rule based on those variables exclusively will not be able to
distinguish between tension and compression. If the objective of the model is to represent tensile damage,
the damage rule has to be re-de®ned such that M�k� > 0 only for those principal directions subject to
tension, while M�k� � 0 for those subject to compression.

Another di�culty with the de®nition in Eqs. (2) and (3) is that the negative values ÿY�k� < 0 could be
obtained when reff

�k� > 0 and �eff
�k� < 0, or vice versa. As isotropic linear elasticity has been assumed between

e�ective stresses and e�ective strains, this could correspond for instance to cases with principal stresses of
the same sign but values much higher in one direction than the other. In such a situation, the Poisson e�ect
caused by the major stresses may be greater than the strain due to the minor stresses themselves, causing
strains with a sign opposite to that of applied stresses. From Eq. (1a±c), it follows that negative dissipation
may be obtained if the damage is allowed to develop in the direction of a negative ÿY�k�. In order to avoid
this, a restriction must be imposed that M�k� � 0, whenever ÿY�k� < 0.

The sign of the principal conjugate forces ÿY�k� in various regions of the e�ective stress space may be
conveniently represented in the 2-D domain reff

�1�; r
eff
�2�, taking reff

�3� � 0 (for plane conditions, the usual
convention that 3 is the out-of-plane principal component even if it might not be the lowest, is adopted
throughout the article). The well-known linear elastic relations �eff

�1� � �reff
�1� ÿ m0reff

�2��=E0 and �eff
�2� �

�reff
�2� ÿ m0reff

�1��=E0 may be introduced into Eq. (3), and the resulting ÿY�1� and ÿY�2� are depicted in Fig. 1(a)
and (b), in the form of contour levels. In Fig. 1(a), the domain is divided in four regions separated by the y-
axis and by the inclined straight line reff

�1� � m0reff
�2�. In the two larger regions labeled 1 and 2, ÿY�1� is positive;

in region 1 with positive reff
�1� and �eff

�1�, and with negative values for both in region 2. In the other two narrow
wedge regions labeled 3 and 4, stress and strain have opposite signs, with resulting negative values of the

Fig. 1. 2D contour levels of the conjugate forces in the reff
�1�;r

eff
�2� space for m0 � 0:3: (a) ÿY�1�, and (b) ÿY�2�.

I. Carol et al. / International Journal of Solids and Structures 38 (2001) 519±546 521



®rst component of the conjugate force. Similar contour levels and regions for ÿY�2� are represented in Fig.
1(b).

In order to handle previous di�culties and restrictions in a convenient way, the conjugate force may be
rede®ned as follows:

ÿ Ŷ�1� � 1
2
hreff
�1�ih�eff

�1�i;
ÿ Ŷ�2� � 1

2
hreff
�2�ih�eff

�2�i; �4a±c�
ÿ Ŷ�3� � 1

2
hreff
�3�ih�eff

�3�i;
where the angle brackets are McAuley brackets with the usual meaning (i.e. hxi � x if x > 0 and hxi � 0
otherwise). Note that this rede®nition actually does not change the resulting dissipation as given by Eq.
(1a±c), because in those regions where the value of one or more principal components of the original
conjugate force are modi®ed, the corresponding component(s) of the damage rule are required to be zero.

In order to ensure not only continuity but also smoothness across the boundaries of the regions implied
by the modi®ed forces, one additional restriction is placed on the damage rule. It is required to be per-
pendicular to the axis ÿŶ�1� (i.e. vanishing component M�1� � 0) for states lying on the plane ÿŶ�2�, ÿŶ�3�,
and similarly for the remaining two axes/planes. If the model is associated, this restriction translates into
the geometrical requirement that, at its intersection with the coordinate planes ÿŶ�1�,ÿŶ�2�, or ÿŶ�2�,
ÿŶ�3�, or ÿŶ�3�,ÿŶ�1�, the loading surface must be always perpendicular to those planes, as it will be
satis®ed by the speci®c loading function described in the next section.

After the previous de®nitions and assumptions, the following additional remarks are in order:
· The principal components of the modi®ed force ÿŶ�1�,ÿŶ�2�,ÿŶ�3� are intrinsically positive. As a con-

sequence, the de®nition of the loading surface will be restricted to the positive±positive±positive octant of
that space (this is in contrast with the original conjugate forces, which could take negative principal val-
ues and the surface had to be de®ned also outside that octant).

· With the modi®ed forces (4), compressive damage cannot be represented. This type of damage is left out
of the scope of this article.

· Note the symmetric role of stress and strain in the modi®ed forces. The absence of a preferential role of
stress or strain has been a characteristic of the general framework of elastic degradation and damage
proposed by the authors (Carol et al., 1994), and of the speci®cation of the theory to second-order dam-
age and pseudo-logarithmic rate described in Part I. It is remarkable that this property can be also main-
tained in Eq. (4a±c).

2.2. Loading surface in the conjugate force space

The loading function is de®ned according to the general structure proposed in Section 6 of Part I, i.e.

F � f �ÿŶ� ÿ r�history�: �5�
For f, the algebraic expression proposed by Chaboche et al. (1994) is adopted

f �ÿŶ� � �
�
ÿ Ŷ�1��b�1 � � ÿ Ŷ�2��b�1 � � ÿ Ŷ�3��b�1

�1=�b�1�
; �6�

where b is a positive constant parameter b P 0, which determines the shape of the surface between the two
limit cases of b!1 and b! 0.

In the limit case of b!1, the surface F � 0 approaches a Rankine-type criterion in the space of
modi®ed conjugate forces ÿŶ, which we call the pseudo-Rankine damage surface. In the sub-region
ÿŶ�1�P ÿ Ŷ�2�P ÿ Ŷ�3�P 0, f may be rewritten as
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f � ÿŶ�1�: �7�
Note that, assuming that principal values are always ordered ÿŶ�1�P ÿ Ŷ�2�P ÿ Ŷ�3�, the surface needs
only to be de®ned in that sixth of the positive±positive±positive octant, and for the rest of the domain, it is
generated by symmetry.

In the opposite case with b! 0, the loading surface approaches a deviatoric plane in ÿŶ space with an
expression

f � ÿŶ�1� ÿ Ŷ�2� ÿ Ŷ�3�: �8�
For intermediate values of b, a continuous transition of surfaces is obtained between the two limit cases.

For instance, for b � 1, the surface becomes a spherical sector. All this is represented in Fig. 2(a) and (b),
which depict a 3-D view of the surface for b � 5, and the 2-D cross-sections of the surface with the plane
ÿŶ�3� � 0, for various values of b. Note that, for any b > 0, this surface is always perpendicular to the
coordinate planes at their intersection, and it provides smooth transition (no corners) at the symmetry
planes ÿŶ�1� � ÿŶ�2�, ÿŶ�2� � ÿŶ�3� and ÿŶ�3� � ÿŶ�1�, which is important for numerical implementa-
tion.

The limit case with b � 0 is a special case which requires additional clari®cation. As the loading surface
becomes a deviatoric plane, the requirement of orthogonality to the coordinate axes/planes cannot be
maintained without generating a discontinuity of the gradients at the intersections. At the same time, it
would seem natural that in this case, the model collapses into isotropic damage, and this corresponds to a
damage rule always parallel to the p-axis (M�1� �M�2� �M�3�), which is incompatible with the assumption
that individual components of M should vanish in speci®c situations (Section 2.1). As the consequence, for
b � 0, all those conditions are relaxed and the model is simply de®ned separately as the isotropic damage
model that would be `closest' to the general anisotropic formulation. This de®nition is given by previous
loading function (8), and by the normals always parallel to the p-axis, as speci®ed in Section 2.3. Note that
as Eq. (8) is written in terms of the modi®ed forces (4), which include only tensile contributions, the iso-
tropic model for b � 0 in general is not equivalent to the classical ``(1ÿ D)'' associated damage model, but
to a non-associated `tension-driven' version of it; only if all three principal components of e�ective stress

Fig. 2. The loading surface for the generalized pseudo-Rankine model: (a) 3D view for b � 5, and (b) 2D cross-section for ÿY3 � 0, for

b � 0; 0:5; 1; 2; 5 and 40.
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and e�ective strain are positive, the modi®ed force then becomes equal to the original, and the model equals
the classical associated formulation.

2.3. Shape of the surface in stress space

The loading surface just de®ned may also be represented in the principal stress space. In general, this
representation is only possible in terms of the e�ective stresses. However, for initial conditions with no
damage, e�ective stresses coincide with nominal stresses and the same diagram will also represent the initial
loading surface in nominal stress space.

Considering the 2-D case again with reff
�3� � 0 for the sake of representation, the principal e�ective strains

in Eq. (4a±c) may be replaced by the linear elastic relations �eff
�1� � �reff

�1� ÿ m0reff
�2��=E0 and �eff

�2� �
�reff
�2� ÿ m0reff

�1��=E0, and the resulting forces may be substituted into the loading function (5), (6). According
to the signs of e�ective stresses and e�ective strains discussed in Fig. 1, the McAuley brackets determine
three regions with di�erent algebraic expressions:

Region 1 : reff
�1� > m0reff

�2�; reff
�2� > m0reff

�1� ! f � 1

2E0
reff
�1� reff

�1�
���

ÿ m0reff
�2�
��b�1

� reff
�2� reff

�2�
��

ÿ m0reff
�1�
��b�1

�1=�b�1�
;

Region 2 : reff
�1�6 m0reff

�2�; reff
�2� > 0! f � 1

2E0
reff
�2� reff

�2�
�

ÿ m0reff
�1�
�
;

Region 3 : reff
�2�6 m0reff

�1�; reff
�1� > 0! f � 1

2E0
reff
�1� reff

�1�
�

ÿ m0reff
�2�
�
: �9a±c�

The resulting loading surface F � 0 for various values of parameter b is represented in Fig. 3, with a general
view in Fig. 3(a) and close-up of the tension±tension sector in Fig. 3(b). In the ®gure, Region 1 corresponds
to the wedge area between the straight lines reff

�1� � m0reff
�2� and reff

�2� � m0reff
�1� in the tension±tension sector (Fig.

3(b)), whereas Regions 2 and 3 extend to the left and right of that wedge.
Overall, the shape of the surface agrees well with the tensile-dominated parts of the standard biaxial

failure diagram for concrete (Kupfer and Gerstle, 1973). In Regions 2 and 3, the surface is not a�ected by
parameter b, which in contrast has signi®cant in¯uence in the tension±tension corner of Region 1. Con-
tinuity of derivatives is maintained between regions, except for the isotropic case b � 0, which did not
exhibit such continuity in the conjugate force space (not perpendicular at the intersections with the co-
ordinate planes). Higher values of b produce a higher curvature of the surface in the tensile±tensile sector,
which, in the limit case of the `pure' pseudo-Rankine model (b!1), becomes a mere continuation of the
curves in Regions 2 and 3, meeting at a sharp corner at the equi-tension line reff

�1� � reff
�2�.

2.4. Damage rule

In the anisotropic case b > 0, the model is assumed to be associated. As the loading function is de®ned in
terms of the principal values of the conjugate force, the damage rule may be expressed as

Mij �Nij � of

o�ÿŶij�
�
X3

k�1

N�k�t
�k�
i t�k�j ; N�k� � oF

o�ÿŶ�k��
; �10a±d�

where the principal gradients N�k� may be directly obtained from Eq. (6), and t�k�i are the components of the
unit vectors in the directions of the major principal e�ective stress and strain, according to the spectral
decompositions:
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reff
ij �

X3

k�1

reff
�k�t
�k�
i t�k�j ; �eff

ij �
X3

k�1

�eff
�k�t
�k�
i t�k�j ; ÿŶij �

X3

k�1

ÿŶ�k�t�k�i t�k�j : �11a±c�

For the case b � 0, the isotropic damage rule is assumed independently of F, as already explained in the
previous section. This leads to the following expressions:

if b > 0; M�k� � �ÿŶ�k��b

�ÿŶ�1���b�1� � �ÿŶ�2���b�1� � �ÿŶ�3���b�1�
� �b=�b�1� ;

if b � 0; M�1� �M�2� �M�3� � 1 i:e: Mij

ÿ � dij

�
: �12a; b�

Note that, for b!1 (pseudo-Rankine), Eq. (12a,b) reduces to

M�1� � 1; M�2� �M�3� � 0 i:e: Mij

�
� t�1�i t�1�j

�
: �13a±c�

With Nij and Mij de®ned, and considering a generic resistance function r�hist�, the gradients in com-
pliance and stress space Nijkl and nij, the corresponding ¯ow rules Mijkl and mij and the hardening/softening
moduli H and �H may be determined using Eqs. (77b,c), (78b,c), (79) and (80) from Part I, in which the
partial derivative oCijkl=oLrs is given by Eq. (69(b)) and the partial derivative o�ÿYpq�=oLrs is given in
Appendix 3, of Part I as well.

For a general value of b, analytical substitution of those partial derivatives leads to lengthy equations
that are not strictly necessary for the implementation of the model (substitutions may be done directly with
numerical values). However, in the limit cases b � 0 and b!1, it is possible to obtain simpli®ed analytical
expressions which o�er further insight. For b � 0 (isotropic damage), expressions similar to Eqs. (29)±(35)

Fig. 3. 2D representation of the loading surface in e�ective stress space.
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of Part I are recovered. In the other limit b!1 (pseudo-Rankine), laborious substitutions and simpli®-
cations lead to the following expressions:

Mijkl � Nijkl �ÿm0

2E0
/ijw

�t1�
k w�t1�l

h
� /klw

�t1�
i w�t1�j

i
� 1� m0

4E0
/ikw�t1�j w�t1�l

h
� /ilw

�t1�
j w�t1�k � /jkw�t1�i w�t1�l � /jlw

�t1�
i w�t1�k

i
; �14a; b�

mij � nij � 1

2

�
ÿ m0

E0
reff
�1�/ij �

1� m0

E0
reff
�1�

�
� �eff

�1�

�
w�t1�i w�t1�j

�
; �15a; b�

ÿ �mij � �nij � Eijklnkl � 1

2
K0�eff

�1� �/ij

h
� 2G0�eff

�1�
�

� reff
�1�
�

�w�t1�i �w�t1�j

i
; �16a; b�

H � or
ok
ÿ 1

4
reff
�1��

eff
�1�

�
� 1

E0
reff
�1�

� �2
�
;

�H � or
ok
� 1

4
reff
�1��

eff
�1�

�
� K0
ÿ � 2G0

�
�eff
�1�

� �2
�
; �17a; b�

where, for convenience, w�t1�i and �w�t1�i denote the ``vector projections'' of wij and �wij on the ®rst principal
e�ective direction t�1�j :

w�t1�i � wijt
�1�
j ; �w�t1�i � �wijt

�1�
j : �18a; b�

2.5. Hardening/softening laws

The remaining aspect is to establish the resistance function r, which accounts for the previous damage
history. As history is represented by the damage variables, it seems natural to assume that r depends on
those variables. The simplest damage measure that may be considered in the context of the present theory
seems to be the scalar quantity given by the ®rst invariant of the pseudo-log damage tensor, i.e. L � Lkk=3.
As explained in Appendix 1 of Part I, L coincides with the volumetric part of the ``true'' log damage:

L � 1
3

ln /2
�1�

�
� ln /2

�2� � ln /2
�3�
�
� 2

3
ln�/�1�/�2�/�3��: �19a; b�

Aiming at the softening behavior due to tensile damage, the function proposed for r�L� is a simple two-
parameter exponential decay

r�hist� � r0eÿ3kL; �20�

where r0 � r2
t =2E0 is the elastic energy at peak of the uniaxial tension test, and k is de®ned in terms of the

Mode I fracture energy per unit volume gf as follows: if b � 0, k � r0=3gf , while if b > 0, k � r0=gf (note
that gf is de®ned as the area under the complete uniaxial stress±strain curve; Fig. 4). These relations will be
justi®ed in the following section after obtaining the closed-form solution for uniaxial tension. It is em-
phasized that the entire damage model has only 5 parameters: the two isotropic elastic moduli E0, m0, the
tensile strength rt and fracture energy density gf , and the shape parameter b linked to the degree of an-
isotropy.
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3. Closed-form solution in uniaxial tension

To better understand the behavior of the model and the physical meaning of r0 and k, the loading case of
uniaxial tension along axis x is now analyzed. This means that r�1� � rxx P 0, whereas all other r�i� and
rij � 0.

A crucial property in this derivation refers to the evolution of damage, for which two cases have to be
distinguished:

(a) Case b > 0: The principal directions of damage remain ®xed and the only component of damage that
evolves is the principal value along the loading axis, i.e. /�1� � /xx, /�2� � /�3� � 1. Also, the e�ective strains
and stresses share the same principal axes and their largest eigenvalues are those along x, i.e. reff

�1� � reff
xx and

�eff
�1� � �eff

xx . With the generalized Rankine-type surface (and the associated damage rule), this is readily
proven because the surface maintains orthogonality to the coordinate planes for b > 0. Initially, e�ective
and nominal quantities coincide and the only non-zero principal e�ective stress is along the x-axis, and the
same holds for the conjugate forces. Therefore, the damage rule (10) also has only one non-zero eigenvalue
along the same axis, and this is the only term modi®ed in /ij (or any of the alternative damage tensors). For
subsequent loading, the situation remains the same because even with damage varying along x-axis, ef-
fective stress components (and therefore conjugate forces) remain zero along y and z. Consequently, we
always have /�2� � /�3� � 1.

(b) Case b � 0: Here, the damage rule is always the identity tensor (12b), and therefore, /ij remains
spherical. Consequently, we have /�2� � /�3� � /�1�.

In both cases, the following simple relations apply:

reff
�1� � r�1�/�1�; �eff

�1� �
��1�
/�1�

: �21a; b�

These equations may be directly substituted into Eq. (3), and the /�1� factors cancel out, leading to the
following expression of the loading function (6)

Fig. 4. The uniaxial tension stress±strain curve with representation of energies r0 and gf .
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F � 1
2
r�1���1� ÿ r: �22�

In other terms, in this case, F may be directly expressed in terms of nominal stress and strain along the
loading axis.

Upon application of the uniaxial tensile load, the model initially responds with linear elastic behavior
until the loading surface F � 0 is reached at a contact point. Since the softening starts right from the
beginning of inelastic behavior (20), this point corresponds to the peak of the uniaxial stress±strain diagram
in tension, with stress and strains denoted as rt and �t. As this is still a point of the initial elastic response,
these values satisfy rt � E0�t. At the same time, this is the ®rst point at which F � 0, and therefore we may
identify the initial value r � r0 as the elastic energy at the peak

r0 � 1

2
rt�t � 1

2

r2
t

E0
� 1

2
E0�2

t : �23a±c�

Upon persistent loading, the condition F � 0 is maintained. From this condition, we obtain the meaning
of r as the current (secant) elastic energy, and extract a simple relation for stress

r � 1

2
r�1���1�; r�1� � 2r

��1�
: �24a; b�

Application of the general elastic stress±strain relations with the secant compliance (Eq. (65) of Part I) to
this loading case, yields

��1� �
/2
�1�

E0
r�1�: �25�

The stress may now be eliminated between this and the second of the previous equations; r may be sub-
stituted from the exponential law (20), and L replaced by its expression in terms of /�1� which, from Eq.
(19a,b), is L � ln /2=3

�1� if b > 0, or L � ln /2
�1� if b � 0 (isotropic damage). The result is a relation between /�1�

and ��1� which may in turn be backsubstituted into the previous expressions to obtain the following explicit
equations for the post-peak descending branch of the uniaxial stress±strain diagram,

if b > 0; r�1� � rt

��1�
�t

� �ÿ�1�k�=�1ÿk�

if b � 0; r�1� � rt

��1�
�t

� �ÿ�1�3k�=�1ÿ3k�
�26a; b�

For k � 0, the exponent is ÿ1 in both cases, and we recover the hyperbolic decay that would correspond
to Eq. (24a,b) with constant r � r0. For k > 0, we obtain sharper decays as k is higher, but note that k must
be less than 1 (for b > 0) or 1/3 (for b � 0) to avoid loss of uniqueness. Those values would indeed cor-
respond to vertical stress drop from the peak.

As already indicated, k may also be related to the Mode I fracture energy per unit volume gf (Fig. 4),
which has the advantage of a clearer physical meaning and provides a simple means of regularizing post-
peak ®nite element computations. This is achieved by integrating the area under the stress±strain curve:

gf � r0 �
Z 1

�t

r�1� d��1�: �27�

Substitution of (26) leads to the following simple relations between parameters:
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if b > 0; k � r0

gf

;

if b � 0; k � r0

3gf

: �28a; b�

Note that the previous restriction on the values of k, translates (in both cases b � 0 and b > 0) into the
condition that gf > r0, which corresponds to avoiding snap back in the uniaxial stress±strain relation.

Backsubstitution of k into the previous equations leads to the following expressions for r

if b > 0; r � r0eÿ3�r0=gf �L;

if b � 0; r � r0eÿ�r0=gf �L: �29a; b�
Most of the remaining unknowns of the problem have common expressions for b > 0 and b � 0:

r�1� � rt

��1�
�t

� �ÿ�gf�r0�=�gfÿr0�
; E � E0 ��1�

�t

� �ÿ2gf=�gfÿr0�
; /�1� �

��1�
�t

� �gf=�gfÿr0�
; �30a±c�

reff
�1� � rt

��1�
�t

� �ÿr0=�gfÿr0�
; �eff

�1� � �t

��1�
�t

� �ÿr0=�gfÿr0�
; �eff

�2� � �eff
�3� � ÿm0�eff

�1� �31a±c�

except the lateral nominal strains, which are

if b > 0; ��2� � ��3� � �eff
�2� � �eff

�3� � ÿm0�t

��1�
�t

� �ÿr0=�gfÿr0�
;

if b � 0; ��2� � ��3� � /�1��
eff
�2� � ÿm0��1�: �32a±c�

These solutions, for all variables except for the lateral nominal strains, are illustrated in Fig. 5 for the
®xed parameter values E0 � 107 kPa, m0 � 0:2, rt � 104 kPa, and changing values of gf . In the ®rst plot, the
evolution of stress rxx � r�1� is represented against the prescribed strain �xx � ��1�. It is apparent that, for
gf � 1, the decay of rxx is the slowest, while for progressively lower ®nite values of gf , softening is more
pronounced. The e�ective stresses (second plot) exhibit a similar trend, but starting from a horizontal line
for the case gf � 1, in which the stress decay is compensated in the same proportion by increase of the
inverse integrity. For progressively lower ®nite values of gf , e�ective stresses decrease more rapidly but
always at a lower pace than their nominal counterparts. The third plot exhibits the evolution of the minor
principal value of the integrity tensor, which in this case is �/xx � 1=/xx. As it could be expected, decay is
faster for lower values of gf . In the fourth plot, the e�ective strains in the direction of loading and in the
lateral directions, are illustrated against the prescribed axial strain. In the limiting case of gf � 1, e�ective
strains remain constant after the peak, while for ®nite values of gf , they decrease asymptotically to zero,
faster as gf decreases and approaches r0. In the case b > 0, the nominal lateral strains are the same as their
e�ective counterparts. In the case b � 0, the nominal lateral strains (not plotted) are simply proportional
with constant Poisson's ratio m0 to the prescribed axial strain (corresponding to the ``(1ÿ D)'' isotropic
damage model, which modi®es E0 but not m0).

4. Other simple loading cases with a closed-form solution

Closed-form solutions similar to the one for uniaxial tension may also be obtained for other basic
loading cases such as pure shear and pure distortion. Also, in these cases, the solution has to be derived
separately for the case b > 0 (anisotropic damage) and b � 0 (isotropic damage). A closed-form solution is
also obtained for the reduction of tensile strength due to previous tensile loading in a perpendicular di-
rection.
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4.1. Pure shear for b > 0 (anisotropic damage)

The principal stresses that correspond to pure shear with prescribed intensity �s > 0 on planes at 45� are

r�1� � �s; r�2� � ÿ�s; r�3� � 0: �33a±c�
For increasing �s, this would represent a straight path at either ÿ45� or 135� (tension/compression quad-
rants) in the biaxial stress space r�1�, r�2�. During the initial undamaged elastic regime, nominal stresses
coincide with e�ective stresses, and the same representation would be valid on the e�ective stress space of
Fig. 3. Similar arguments to the case of pure tension in previous section, lead to the conclusion that for
b > 0, the only direction developing damage will be principal direction1, i.e. the one with the tensile stress.
This means that /�1� is the only damage component growing from 1 to1 , while /�2� � /�3� � 1 (note that

Fig. 5. The results obtained with generalized pseudo-Rankine model under uniaxial loading, for di�erent values of parameter gf .

Evolution with respect to the prescribed uniaxial strain, of (a) stress, (b) e�ective stress, (c) integrity tensor, and (d) e�ective strains.
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this is due to having written the loading function in terms of the modi®ed conjugate forces (4) which
distinguish tension from compression; otherwise, compressive direction 2 would also develop damage). This
implies the following e�ective stresses (Eq. 60(b) of Part I):

reff
�1� � /�1��s; reff

�2� � r�2� � ÿ�s; reff
�3� � r�3� � 0: �34a±c�

Using linear isotropic elasticity with parameters E0, m0, and the nominal-e�ective relations (Eq. (61), (62) of
Part I), one can obtain the corresponding e�ective and nominal strains:

�eff
�1� �

�s
E0
�/�1� � m0�; �eff

�2� � ÿ
�s

E0
�1� m0/�1��; �eff

�3� � ÿm0 �s
E0
�/�1� ÿ 1�; �35a±c�

��1� � �s
E0
�/�1� � m0�/�1�; ��2� � �eff

�2�; ��3� � �eff
�3�: �36a±c�

In order to identify the strain c conjugate to �s, the elastic energy is developed, leading to

u � 1

2
rij�ij � 1

2
�sc; c � ��1� ÿ ��2� � �s

E0

1
�
� 2m0/�1� � /2

�1�
�
: �37a±c�

In the elastic range, Eqs. (33a±c)±(37a±c) apply if we set /�1� � 1. The loading condition is reached for the
®rst time when F � 0, i.e.

F � 1

2
reff
�1��

eff
�1� ÿ r0 � �s2

2E0
�1� m0� ÿ r0 � 0: �38�

This value of �s represents the elastic stress at the contact point with the loading surface for this type of
loading (onset of damage), which we call s0. Taking advantage of previous relations (23), one may write

s0 � rt�������������
1� m0
p : �39�

After peak, the loading surface is enforced with the current value of r. For b > 0, this is given by Eq.
(29a,b), in which L � Lkk=3 is the same as in uniaxial tension, i.e. L � ln /2=3

�1� . Replacing all these expres-
sions, one obtains

F � 1

2
reff
�1��

eff
�1� ÿ r � �s2

2E0
�/�1� � m0�/�1� ÿ r0/

ÿ2r0=gf

�1� � 0: �40�

The previous equation may be rewritten in the following convenient form:

�s � s0

������������������
1� m0

/�1� � m0

s
/ÿ�1=2�ÿ�r0=gf �
�1� : �41�

Replacing this relation into Eqs. (33a±c)±(36a±c), one may obtain all remaining stresses and strains,
nominal and e�ective, in terms of the damage variable /�1�. Finally, Eq. (41) may be replaced into the
conjugate strain expression (37) to obtain

c � c0

1� 2m0/�1� � /2
�1�

2�1� m0�

������������������
1� m0

/�1� � m0

s
/ÿ�1=2�ÿ�r0=gf �
�1� ; �42�

where the peak strain is

c0 � 2�t

�������������
1� m0

p
� s0

G0
�43�

and G0 is the initial shear modulus G0 � E0=2�1� m0�.
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The form of Eqs. (41) and (42) is such that it is not easy to eliminate /�1� and obtain an explicit relation
between �s and c. Nevertheless, one can use them as two parametric expressions in terms of /�1�. By giving
values between 1 and 1 to this variable, pairs of values of �s and c may be generated and plotted in a
diagram. This has been done in Fig. 6(a), for the parameter values E0 � 107 kPa, m0 � 0:2 and rt � 104 kPa
(same as in the previous section), which leads to the values of s0 � 9129 kPa and c0 � 0:002191. Various
curves have been obtained for gf=r0 � 1:001; 1:25; 2; 5 and 100 (for practical purposes similar to 1). Note
that, also in this case, parameter b is irrelevant as long as b > 0.

Fig. 6(a) shows how brittle and unstable the post-peak response is for the pure shear loading case.
Curves with snap-back are obtained for usual values of gf=r0 between 2 and 10. Actually, these results have
to be interpreted carefully, because even those curves without snap-back would be unstable for the `pre-
scribed-stress' type of loading assumed (the curves can be plotted thanks to the parametric nature of the
equations used, in which /�1� takes the role of always-increasing indirect control variable in the test). The
precise value of gf=r0 for which snap-back disappears may be obtained from previous Eqs. (41) and (42).
The slope of the shear response is given by the derivative of �s with respect to c, which can be expanded via
chain rule

o�s
oc
� o�s

o/�1�

o/�1�
oc
� o�s

o/�1�

1

oc=o/�1�
: �44�

In particular, the snap-back will occur when oc=o/�1� vanishes. By developing this derivative from ex-
pression (42), and setting /�1� � 1, one obtains the following limit condition at the beginning of the
postpeak curve:

gf

r0

� 2
1

m0

�
� 1

�
: �45�

For the value of m0 � 0:2 used in the example, the condition for no snap-back becomes gf=r0 > 12, which is
in good agreement with Fig. 6(a). Note also that this value would be higher for lower Poisson's ratios and,

Fig. 6. The results obtained with generalized pseudo-Rankine model with b > 0 (anisotropic damage) under (a) pure shear loading, and

(b) pure distortion loading, for di�erent values of the parameter gf .
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in the limit case of m0 � 0, would become in®nite. In this case, the response would always exhibit snap-back,
no matter how large the value used for gf=r0.

4.2. Pure distortion for b > 0 (anisotropic damage)

In this alternative loading case, principal strains 1 and 2 are prescribed with same intensities �c=2 > 0 and
opposite signs, while stress on axis 3 is maintained zero (plane stress). As before, only the ®rst principal
component of the inverse integrity tensor /�1� grows from its initial unit value, while the other two remain
unchanged /�2� � /�3� � 1. This implies the following nominal and e�ective strains and stresses:

��1� � �c
2
; ��2� � ÿ �c

2
; �46a; b�

�eff
�1� �

1

/�1�

�c
2
; �eff

�2� � ÿ
�c
2
; �47a; b�

reff
�1� � G0�c

1ÿ m0/�1�
�1ÿ m0�/�1�

; reff
�2� � ÿG0�c

/�1� ÿ m0

�1ÿ m0�/�1�
; reff

�3� � 0; �48a±c�

r�1� � G0�c
1ÿ m0/�1�
�1ÿ m0�/2

�1�
; r�2� � reff

�2�; r�3� � 0: �49a±c�

From these, one can obtain the out-of-plane strains

��3� � �eff
�3� � ÿ

m0

1ÿ m0

1ÿ /�1�
/�1�

�c
2
: �50a; b�

The identi®cation of the stress quantity s conjugate to �c, follows a similar procedure as in the case of
®xed stress ratio, leading to

s � 1

2
�r�1� ÿ r�2�� � 1

2
G0�c

1ÿ 2m0/�1� � /2
�1�

2�1ÿ m0�/2
�1�

: �51a; b�

In the elastic range, this strain history produces the same results as in the previous section, which can be
veri®ed by setting /�1� � 1 in both sets of equations. Stress and strain at the contact point with the loading
surface (onset of damage evolution) are also the same s0 and c0 given by Eqs. (39) and (43). After peak,
enforcement of F � 0 with the current value of r leads to the expression of �c in terms of the damage variable
/�1�:

�c � c0

��������������������
1ÿ m0

1ÿ m0/�1�

s
/1ÿ�r0=gf �
�1� : �52�

Replacing this expression into previous Eqs. (46a,b)±(51a,b), one obtains all the remaining variables of the
problem in terms of /�1�, and, in particular, that of the conjugate stress:

s � s0

1ÿ 2m0/�1� � /2
�1�

2�1ÿ m0�

��������������������
1ÿ m0

1ÿ m0/�1�

s
/ÿ1ÿ�r0=gf �
�1� : �53�

As before, the solutions turn out to be independent of parameter b (degree of anisotropy of the model), as
long as b > 0. Eqs. (52) and (53) may be used as parametric expressions for �c and s in terms of the always-
increasing variable /�1�P 1. In this way, pairs of values have been obtained and plotted in Fig. 6(b), for the
same parameters and values of gf=r0 as in previous section.
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In Fig. 6(b), it can be seen that this case is considerably more stable than the previous one. Although
right after the peak most of the curves exhibit softening, none of them has snap-back. Initial negative slopes
rapidly decrease and change sign, and all the curves end up approaching the same asymptote with positive
slope (dashed line in the ®gure). The curve for the highest value of gf=r0 � 100 skips the softening alto-
gether, starting after the peak directly with hardening. The limit value of gf=r0 for this transition may be
calculated again with Eq. (44). In this case, o�c=o/�1� is always positive, and the horizontal tangent corre-
sponds to the zero of os=o/�1�. Developing this condition, and setting /�1� � 1, one obtains

gf

r0

� 2
1

m0

�
ÿ 1

�
: �54�

Using m0 � 0:2, this formula leads to gf=r0 � 8, which is in good agreement with Fig. 6(b). Note also that
this limit value is higher for lower Poisson's ratios, becoming gf=r0 � 1 for the limit case of m0 � 0, i.e. in
this case, all the curves would start in the softening regime no matter how large the value of gf=r0 is.

Another interesting peculiarity of this case is that even if the prescribed strain is increased unlimitedly
�c!1, the damage expressed in terms of the inverse integrity /�1� does not grow inde®nitely, but it reaches
asymptotically a ®nite value. This value may be obtained from the expression of �c (52), which becomes
in®nity as the denominator vanishes. This translates into the condition

/max
�1� �

1

m0
: �55�

For the value m0 � 0:2 used in the example, this yields an asymptotic value of /max
�1� � 5. The slope of the

asymptotic sti�ness may also be obtained from previous equations as the ratio s=�c when the limit value
/�1� � 5 is approached. By doing so, one obtains s=�c � E0=4 � G0�1� m0�=2, which is the slope of the
dashed line represented in Fig. 6(b).

The fact that in this loading case, s always ends up increasing regardless of gf=r0, may be interpreted
physically because damage is only allowed to develop in the tensile direction, while sti�ness in the com-
pressive direction remains unchanged. When damage starts, stress in the tensile direction decreases, more
abruptly at the beginning and then progressively more slowly, while in the compressive direction stress
always increases. Thinking of a Mohr diagram, the shear stress is given by the radius of the Mohr circle.
Initially, the decrease rate of the tensile stress may exceed the increase rate of the compressive stress, causing
a decrease in shear stress, but sooner or later the increase of compression will overcome the decrease of
tension, and shear stress will start increasing again.

4.3. Pure shear or distortion for b � 0 (isotropic damage)

In this case, damage is isotropic and therefore the inverse integrity tensor remains spherical, i.e. all three
eigenvalues have the same value /�1� � /�2� � /�3� � /, with / varying from 1 to 1 as the damage pro-
gresses.

As before, one can consider the two loading cases of pure shear and pure distortion. For b � 0, however,
both cases turn out to coincide. Here we start with pure shear. The prescribed stresses are again given by
Eqs. (33a±c), leading in this case to the following e�ective stresses, and e�ective and nominal strains:

reff
�1� � �s/; reff

�2� � ÿ�s/; reff
�3� � 0; �56a±c�

�eff
�1� �

�s
2G0

/; �eff
�2� � ÿ

�s
2G0

/; �eff
�3� � 0; �57a±c�

��1� � �s
2G0

/2; ��2� � ÿ �s
2G0

/2; ��3� � 0: �58a±c�
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One can immediately see that ��1� and ��2� have identical values and opposite signs, which means that they
could be renamed c=2 and ÿc=2, and the full equivalence to the pure distortion case could be immediately
established.

The strain c conjugate to �s is now

c � ��1� ÿ ��2� � �s
G0

/2: �59a; b�

The loading surface F � 0 is enforced with the resistance function r given by Eq. (29a,b) and the log
damage L � Lkk=3, which for isotropic damage becomes L � ln /2. Replacing all these into F � 0, the
expression of the prescribed stress �s in terms of / is obtained, which then can be substituted in previous
equations to obtain all the remaining variables in terms of /, and in particular that of the conjugate strain c.
The expressions of interest are

�s � s0/
ÿ1ÿ�r0=gf �; c � c0/

1ÿ�r0=gf �; �60a; b�
where the stress and strain at the contact point, s0 and c0, are the same as for b > 0, Eqs. (39) and (43).

Parametric equations (60a,b) look simpler than their anisotropic counterparts (41) and (42) or (52) and
(53). Actually, in this case, it is possible to isolate / in terms of c from the second equation and replace in
the ®rst. The result is the explicit relation,

�s � s0

c
c0

� �ÿ�gf�r0�=�gfÿr0�
; �61�

which is valid after damage starts, for c > c0.
The curves de®ned by Eq. (61) are plotted in Fig. 7, for the same ®xed elastic parameters E0 � 107 kPa

and m0 � 0:2, and the same values of gf=r0 � 1:001, 1.25, 2, 5 and 100, as in the previous section. In this
case, all the curves exhibit similar trends. Although the exponential type of decay is more pronounced for
lower gf=r0 (and becomes a vertical drop for the limit case gf=r0 � 1), eventually all the curves approach the
horizontal axis, and none of them exhibits snap back. These facts, together with the equivalence between

Fig. 7. The results obtained with generalized pseudo-Rankine model with b � 0 (isotropic damage) under pure shear/distortion

loading, for di�erent values of the parameter gf .
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prescribed shear and prescribed distortion loading, show how the response of the traditional isotropic
damage model can deviate substantially (not only quantitatively, but also qualitatively) from that predicted
with an anisotropic formulation.

4.4. Dependency of tensile strength on previous tensile loading in perpendicular direction, for b > 0

Another analytical solution of practical interest is the in¯uence on the uniaxial stress response, of a
previous uniaxial tension loading and unloading in a perpendicular direction. This is only developed for the
anisotropic version of the model (b > 0), because with isotropic damage the in¯uence is trivial (i.e. the
stress±strain diagram in the y-direction continues the unloading±reloading path initiated in the x-direction
as if direction had not changed).

To develop this case, we consider a load history with three steps. First, uniaxial loading is applied along
the x axis until some post-peak state; second, this stress is unloaded completely; and third, a second uniaxial
load is applied along the y axis.

The response to the ®rst uniaxial loading along x is the same as developed in Section 3. Evolution of all
variables is given by Eqs. (30a±c)±(32a±c) and represented in Fig. 5. If the maximum strain prescribed
during this ®rst part of the load history is �xx � �� > �t, the values reached by the other evolving variables
will be

rxx � r� � rt

��

�t

� �ÿ�gf�r0�=�gfÿr0�
;

/xx � /� � ��

�t

� �gf=�gfÿr0�
;

L � L� � 2

3
ln

��

�t

� �gf=�gfÿr0�
;

r � r� � r0

��

�t

� �ÿ2r0=�gfÿr0�
: �62a±d�

At the same loading stage, sti�ness will have degraded according to the general expression (57) of Part I. In
matrix form, the corresponding compliance is

C� � 1

E0

�/��2 ÿ/�m0 ÿ/�m0

ÿ/�m0 1 ÿm0

ÿ/�m0 ÿm0 1
2/��1� m0�

2�1� m0�
2/��1� m0�

26666664

37777775: �63�

Upon unloading (second part of the load history), stress and strain will go back to zero, while the secant
compliance C� remains unchanged. /xx, L and r will also keep their modi®ed values /� > 1, L� > 0 and
r� < r0.

In the third part of the load history, uniaxial tensile loading is applied along direction y. Until the
loading surface is reached again, the material responds elastically according to the secant compliance C�.
However, note that the diagonal component 2,2 in matrix (63) remains unchanged, i.e. the uniaxial com-
pliance along y is still the initial 1=E0. Also, the principal integrity value along this axis remains unchanged
and equal to 1 (no damage); thus, we can write

ryy � reff
yy � E0�yy ; �64�
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while all other components of stress, nominal and e�ective, remain zero.
The strength in the y direction will be given by the new contact point with the loading surface, which

may be expressed as

F � 1

2
reff

yy �
eff
yy ÿ r � r2

yy

2E0
ÿ r� � 0: �65�

As r was reduced from r0 to r� during the previous loading, the loading surface has shrunk and the new
contact value of ryy will be indeed lower than the initial tensile strength rt. Replacing r� with its expression
and making the appropriate substitutions, one can ®nally reach the expression:

rmax
yy

rt

� r�

rt

� �r0=�r0�gf �
�66�

As it is required that gf > r0 (and most often gf > 3r0), the exponent on the right-hand side will be smaller
than 0.5 (and most often than 0.25), and the fraction rmax

yy =rt will be signi®cantly higher than the fraction
r�=rt. This means that the tensile strength along y, although a�ected by the previous loading on x, will
decrease less (and in general signi®cantly less) than the amount that the strength had been reduced on
that axis. This is illustrated with some numerical values for the cases of gf=r0 � 3 and 7, which are given in
Table 1.

It has to be noted again that the previous values (same as all expressions in this section) are only valid for
the anisotropic version of the model (b > 0). For the isotropic damage model with b � 0, the reduction of
the strength along y would be identical to the reduction produced during the previous loading along x, i.e.
®gures in the two horizontal rows in the table would be identical to those in the heading.

On the other hand, one can also try to imagine how the cross-in¯uence on tensile strength could be
eliminated altogether. The resistance function assumed in this study r � r�L� is among the simplest possible,
and accounts for previous history through the single scalar quantity L. This scalar measure of logarithmic
damage can certainly not `remember' on which direction previous damage was generated, and it is actually
remarkable that the e�ect of some previous damage in a perpendicular direction is somehow reduced,
thanks to the interaction with the sti�ness, still intact along the loading axis. If desired, complete elimi-
nation of the cross-in¯uence on tensile strength should be achieved via a more complicated resistance
function, which could be made dependent on the whole damage tensor rather than its ®rst invariant, i.e.
r � r�/ij�. Such a generalization, however, falls beyond the scope of the present article.

5. Numerical test with rotation of principal directions

In order to investigate the behavior of the proposed anisotropic model under general loading situations
where principal directions may rotate, the numerical test proposed by Willam et al. (1987) has been chosen.
This test has become widely used to verify and compare constitutive models for cracking and damage (Rots,
1988; Oliver et al., 1990; Feenstra and de Borst, 1992; Carol and Prat, 1995; Guzina et al., 1995; Kroeplin
and Weihe, 1997; Meschke et al., 1998).

Table 1

Tensile strength reduction rmax
yy =rt due to previous loading in perpendicular direction

r�xx=rt 0.8 0.6 0.4 0.2 0.1

rmax
yy =rt for gf � 3r0 0.95 0.88 0.80 0.67 0.56

rmax
yy =rt for gf � 7r0 0.97 0.94 0.89 0.82 0.75
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The test consists of two loading steps: In the ®rst one, a uniaxial tensile stress is applied in the x di-
rection, bringing the material to the onset of softening (i.e. in this case, the peak of the uniaxial stress±strain
law). In the second step, increments of the in-plane strain components �xx, �yy and �xy are prescribed in the
proportions 1, 1.5, 1, while the out-of-plane degrees of freedom remain with prescribed zero stress. This
represents an increment of positive (tensile) strain for both principal directions, accompanied by a rotation
of principal axes. The rotation pace is faster at the beginning and progressively slower later on, with a ®nal
asymptotic value of 52.02�. The parameter values E0 � 107 kPa, m0 � 0:2 and rt � 104 kPa are the same as
in the previous section. Fracture energy is taken as gf � 15 kPa, i.e. three times the elastic energy at peak.
The results are presented for values of b � 0 (isotropic damage), 0.5, 1, 5 and 40 (close to `pure' pseudo-
Rankine).

In Fig. 8(a), the prescribed strain components �yy , �xy and the resulting principal in-plane strains ��1� and
��2�, are plotted against the prescribed strain along the x-axis, �xx, which is taken in all subsequent plots as a
reference `time variable'. The angle of rotation of the major principal strain which is implied by previous
prescribed values, is plotted in Fig. 8(b). The results obtained with the model in terms of stress, e�ective
stresses, conjugate forces, damage values and rotation of principal directions of all these quantities, are
illustrated in Figs. 9±14.

In Fig. 9, the evolution of stress components rxx, ryy , rxy and principal stresses r�1� and r�2�, are shown
together in four ®gures for the values of b � 0 (isotropic damage), b � 1, b � 5 and b � 40. In Fig. 10, the
same set of curves are regrouped into four plots, each representing the evolution of a single stress com-
ponent obtained for the various values of b. From the ®gures, it is apparent that, as the parameter b in-
creases and we approach the pseudo-Rankine loading surface, the stress evolution becomes progressively
di�erent from the one obtained with isotropic damage. The main di�erences observed are the inversion of
sign of the shear stress, the higher increase of ryy that at some point overcomes rxx, the short horizontal
plateau in the rxx stress component towards the middle of its descending branch and, perhaps the most
salient, the secondary peak that appears around the middle of the descending curve of the major principal
stress.

Unfortunately, in the literature on concrete and quasi-brittle materials, there seems to be no experi-
mental information for this type of tensile test with rotation of principal directions. This is probably due to

Fig. 8. The prescribed strain for Willam's test. Evolution, with respect to component �xx, of (a) components �yy , �xy and principal values

��1�, ��2�, and (b) angle of major principal direction of strain with x-axis.
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the numerous practical di�culties that would be involved in such a laboratory test. Comparison is therefore
restricted to other numerical results. Phenomena such as secondary peaks or shear inversion have been
previously reported with some smeared cracking or damage models. In general, those were more compli-
cated models with a number of arbitrary parameters such as the crack threshold angle or the shear retention
factor (Rots, 1988; Oliver et al., 1990; de Borst et al., 1994; Weihe et al., 1998), models using separate yield
surfaces for each of the potential crack planes with its own inelastic multiplier, softening history, etc. (Carol
and Prat, 1995; Kroeplin and Weihe, 1997), or multidissipative models combining damage and plasticity
(Meschke et al., 1998). It is a pleasant surprise that the proposed generalized pseudo-Rankine model, with

Fig. 9. The results of generalized pseudo-Rankine model subject to Willam's test. The evolution of in-plane stress components and

principal values with prescribed strain �xx for (a) b � 0, (b) b � 1, (c) b � 5 and (d) b � 40.
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only ®ve parameters and one of the simplest resistance functions possible, is nevertheless capable of rep-
resenting this type of features.

In Fig. 11, similar illustrations as in Fig. 9 are shown for the e�ective stresses. Each plot contains the
evolution of in-plane components and principal values of the e�ective stresses, for a ®xed value of pa-
rameter b that may be 0, 1, 5 or 40. Although di�erent in magnitude, these plots are qualitatively similar to
those of the conjugate forces ÿYij, represented in Fig. 12. Very interesting is the fact that, as b is assumed
larger and the loading surface closer to pure pseudo-Rankine, at some advanced point of the loading se-
quence the e�ective stress tensor becomes spherical, with vanishing shear components and converging
values of reff

xx , reff
yy , reff

�1� and reff
�2�. This is specially pronounced in the plot for b � 40, and clearly corresponds

to the fact that the current point reaches the `smoothed vertex' of the pseudo-Rankine surface, which is the
only region with a normal along the p-axis, i.e. with a damage rule producing increments of purely isotropic
degradation. Note that this transition point also coincides with abrupt changes of slope of some of the
curves in previous Figs. 10 and 11, particularly with the end of the plateau in the rxx curve (and similarly in
the �/xx curve shown later in Fig. 13). One small but interesting di�erence in the plots of the conjugate forces

Fig. 10. The results of generalized pseudo-Rankine model subject to Willam's test. The evolution of stresses with respect to prescribed

strain �xx and for various values of b: (a) component rxx, (b) eigenvalue r�1�, (c) component ryy , and (d) component rxy .
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(Fig. 12) is the slight negative values observed for the ÿYyy and ÿY�2� curves, at the beginning of the second
part of the test. In any case, these negative values have no practical consequence given the modi®ed forces
de®ned in Section 2, with which negative values are set to zero.

In Fig. 13, the evolution of the components of the integrity tensor �/ij (inverse to /ij), is presented in four
graphs for b � 0, b � 1, b � 5 and b � 40. For the integrity tensor, the lowest principal value has been
considered as �/�1� because it corresponds to the direction with the largest amount of damage. It can be seen
in the ®gures that, as b is higher, the di�erence between the principal values 1 and 2 increases, one becoming

Fig. 11. The results of generalized pseudo-Rankine model subject to Willam's test. The evolution of in-plane e�ective stress compo-

nents and principal values with prescribed strain �xx for (a) b � 0, (b) b � 1, (c) b � 5 and (d) b � 40.
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considerably larger and the other smaller (by a factor up to 5) than the damage obtained in the isotropic
case (b � 0). For higher values of b, a small plateau starts to appear in the descending curve of �/xx, around
the value 0.4. This plateau, which ends abruptly when �xx equals about twice the peak strain, coincides very
well with the one observed for nominal stresses.

In Fig. 14, the evolution of the angles of the major principal directions is depicted in four plots. The ®rst
of them represents the evolution of the orientation of the major principal directions of stresses, e�ective
quantities and damage for b � 1, together with the (prescribed) orientation of the major principal strain. In
each of the second, third and fourth plots, the evolution of one of those orientations is depicted for the
various values of b. In the case of isotropic damage (b � 0), coaxiality is maintained, and therefore curves
for stress or e�ective stress coincide with the curve for the angle of prescribed strain, which is included in all
plots (for damage it does not make sense to talk about principal direction in this case, as the tensor remains

Fig. 12. The results of generalized pseudo-Rankine model subject to Willam's test. The evolution of in-plane conjugate force com-

ponents and principal values with prescribed strain �xx for (a) b � 0, (b) b � 1, (c) b � 5 and (d) b � 40.
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isotropic). Examining all di�erent response features, we note the general tendency that the rotation of
damage falls slightly behind the rotation of the driving strain, while both e�ective stress, and especially
nominal stress, signi®cantly overtake the prescribed strain rotation. This may be explained with the ar-
gument that damage weakens the material in directions of previous principal strain, and under application
of a subsequent increment of strain, the corresponding increments of stress overrotate, following the
general principle that the sti�er part always takes more stresses. For b � 40, it is apparent that as the
smooth corner of the pseudo-Rankine surface is reached and degradation increments become fully iso-
tropic, the damage also becomes coaxial with prescribed strain. At the same time, e�ective stresses stop
rotating (actually the rotation is slightly reversed) and the rotation rate of stresses is drastically reduced.

Fig. 13. The results of generalized pseudo-Rankine model subject to Willam's test. The evolution of in-plane damage components �/xx,
�/yy and principal values �/�1� and �/�2� with prescribed strain �xx, for (a) b � 0, (b) b � 1, (c) b � 5 and (d) b � 40.
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6. Concluding remarks

The new concept of pseudo-logarithmic rate of damage was introduced in `Part I'. This damage rate and
the corresponding conjugate forces exhibit convenient properties, which greatly simplify the task of de®ning
loading surface and evolution laws for anisotropic damage.

Fig. 14. The results of generalized pseudo-Rankine model subject to Willam's test. The evolution of angles between x-axis and major

principal directions of (a) stress, damage, e�ective stress and strain for b � 0, (b) stress for various values of b, (c) damage for various

values of b, and (d) e�ective stress for various values of b.
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In this `Part II', a speci®c model is developed within the new framework. First, modi®ed conjugate forces
are de®ned, which make it possible to distinguish tension and compression cases and avoid negative dis-
sipation. The loading surface is then de®ned in the space of these modi®ed forces. Depending on a single
parameter b, a family of shapes is generated between the p-plane (classical isotropic damage) and the
Rankine-type surface (maximum anisotropic damage). Equipped with very simple evolution laws, the
model exhibits a closed-form solution in uniaxial tension, which allows us to identify the damage pa-
rameters in terms of physical quantities that can be measured in the laboratory such as rt and gf . Together
with E0, m0 and b, this makes a total of only ®ve material parameters for the anisotropic damage model. The
fact that gf is one of the parameters, is also very convenient for implementing energy regularization pro-
cedures at the ®nite element level.

Additional closed-form solutions are presented for pure shear and pure distortion, as well as the in-
¯uence on the tensile strength, of a previous loading/unloading sequence in a perpendicular direction. These
solutions clearly show how the response of the isotropic damage model (b � 0) may di�er substantially
from that of a full anisotropic model (b > 0).

In spite of its relative simplicity, this model is capable of representing complex anisotropic response, as
obtained from its application to a numerical test in tension/shear with signi®cant rotation of principal strain
directions. In these calculations, the generalized pseudo-Rankine model exhibits secondary peaks, and a
number of other phenomena only observed so far with more complicated models.
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